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ABSTRACT  

 

The human fingernail is a vital organ used by humans on a daily basis and can provide an 

immense supply of information based on the biological feedback of the body. By 

studying the quantitative mechanical and acoustic properties of fingernails, a better 

understanding of the scarcely-investigated field of ungual research can be explored. 

Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this 

thesis. This thesis involves the application of a developed portable ultrasonic device in a 

hospital-based data collection and the advancement of ultrasonic methodology to include 

the calculation of acoustic impedance, density and elasticity. The results of the thesis 

show that the reflectance method can be utilized to determine fingernail properties with a 

maximum 17% deviation from literature. Repeatability of measurements fell within a 

95% confidence interval. Thus, the ultrasonic reflectance method was validated and may 

have potential clinical and cosmetic applications. 
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Chapter 1 INTRODUCTION 

 

Summary: This chapter aims to introduce the motivation of the thesis in terms of why 

fingernails and ultrasound were used, then to provide background information on the 

Physics of ultrasound. 

------------------------------------------------------------------------------------------------------------ 

1.1 General Introduction and Motivation 

Minimal research has been provided in the last three decades in regards to 

fingernail properties other than mineral testing. This thesis looks to provide greater 

insight into the mechanical and acoustical properties of human fingernails [1, 2, 3, 4, 5, 6, 

7, 8, 9, 10]. Fingernails are important not only for cosmetic purposes but also from a 

medical perspective, since their properties are highly indicative of the chemical 

composition of the bloodstream. Therefore, even slight deviations from homeostatic 

equilibrium would likely manifest in the fingernails as discoloration, texture change and 

discomfort or pain. Such examples include fingernail deformities brought on by 

chemotherapy treatment of cancer which can lead to both color and morphological 

changes [11, 12, 13]. The motivation for this thesis is to provide a novel method of 

investigating fingernails as biomarkers to possibly diagnose and monitor blood stream 

variations stemmed from changes in the body alongside current methods. This is to be 

accomplished by quantitatively assessing human fingernail properties through the use of 

ultrasound.  

This thesis first encompasses a clinical data collection using an ultrasonic 

prototype device for quantitative measurements of fingernails as a proof-of-concept. 

Following the data collection, a new procedure to further calculate mechanical properties 

with an improved ultrasonic probe was established. The data collection was based on the 

investigation of fingernail time-of-flight (TOF), while the latter method focused on 

parameters such as acoustic impedance, density and elasticity. Calibrations of the new 
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device, as well as its resolution characteristics were reviewed. Phantoms with known 

properties were implemented for calibration and accuracy assessment. 

 

1.2 Fingernail Anatomy and Current Methods of Fingernail Assessment 

1.2.1 Fingernails as Possible Biomarkers  

Due to their rapid rates of cellular growth and proliferation, fingernails readily 

provide a means of detecting changes to the chemical composition of the bloodstream 

[14, 15, 16]. It is well-known that the individual’s health status, in addition to 

environmental factors such as nutrition, temperature and humidity, all play roles in 

determining the morphologic structure of the fingernails [13, 17]. Their potential for use 

as biomarkers in diagnosing systemic pathologies stretches back many centuries, and is 

still in practice today among medically certified personnel in the field of dermatology 

[13, 18]. In recent decades, there have been several studies dedicated to correlating 

fingernail properties with underlying disease or chemical elements present in the human 

body as outlined in Table 1.1. Most of the methods in literature involve the categorization 

of specific minerals or compounds in fingernails that can either benefit or cause harm to 

the fingernails, such as keratin or arsenic, respectively. Various methodologies were 

implemented such as mass spectroscopy and centrifugation; however these in-vitro 

techniques may be somewhat limited in their applicability to a living organism. The 

fingernails are so easily affected by chemical changes present in the body that there is 

much promise to further investigate them as biomarkers. 
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Table 1.1: List of substances in the body that have been investigated by means of fingernails. 

Fingernail Biomarker Reference 

Metal Exposure [1] [2] 

Alcohol [3] [4] 

Fluoride [5] [6] 

Arsenic [7] [8] 

Mercury [8] [9] 

Uric Acid [10] [19] 

Keratin [20] [21] 

Cortisol [22] [23] 

 

1.2.2 Fingernail Anatomy [24] 

The anatomical representation of the fingernail and its essential components are 

illustrated in Fig 1.1.The human fingernail is comprised of a stiff nail plate, soft and 

hardened tissues inside and around the nail plate, vasculature and nerves. Ventral to the 

nail plate is the cellular matrix that is responsible for the formation of the nail itself. This 

tissue contains the main supply of keratinocytes required for the advancement of nail 

growth. The other main subungual component of the nail is the nail bed. The matrix and 

nail bed are in contact with each other but have slightly different characteristics and roles. 

While the matrix is mainly closest to the proximal portion of the nail (15-25% of the 

tissue) and extends distally to form the eponychium (cuticle). The remaining 75-85% of 

tissue is the nail bed which spreads distally to the hyponychium (fingertip). Dorsal to the 

nail matrix on the visible surface of the finger located proximally is the proximal nail 

fold, which forms even before the fingernail plate emerges, acting as a barrier to repel 

and protect against external bacteria and damage to the matrix. Attached to all of these 

described tissues is the fundamental nail plate formed from a class of stratum corneum 

giving rise to a glossy, hardened and keratinized nail. The nail plate grows distally 

outwards at a rate of approximately 115 µm per day from the proximal nail fold, lying 

atop of the matrix and nail bed. Nevertheless, the rate of growth varies greatly between 

individuals due to countless factors including age, gender, race, diet and outdoor 
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environment. The remainder of the finger is surrounded by a soft pulp to act as a cushion 

for the nerves and vasculature when pressure is applied during normal human activity. 

Blood to the phalanges is supplied from the radial and ulnar arteries, and is drained via 

the dorsal and palmar veins [25]. 

 

Figure 1.1: Anatomy of the basic components making up the distal portion of the finger in connection with the 

fingernail. 

 

1.2.3 Comparison of Quantitative Measurement Methods and Ultrasound 

Literature Review 

Numerous methods exist to quantify and assess industrial and biological 

materials. Microscopy and optical coherence tomography (OCT) involves capturing a 

zoomed-in, high resolution, digital image. This method provides a visual, qualitative 

perspective of the color and texture of the fingernail which are altered depending on the 

lighting, saturations and other discrepancies; minimal quantitative information about the 

internal structure can be obtained [26]. Similarly, making use of a micrometer to measure 

changes in the distal edge of the nail plate is not an exact representation of the entire nail 

thickness and has appreciable error due to the device’s precision and the skill of the user. 



www.manaraa.com

5 

 

Spectroscopy identifies which molecules are present in the fingernail based on the 

intensity of light reflected at certain wavelengths and their triggered frequencies. This 

method was shown to have difficulty distinguishing differences between samples, due to 

the fact that molecular composition varies between each person [26]. The utilization of x-

rays to view the internal structure of the finger is only effective for discerning larger and 

thicker samples such as bones with higher attenuation; the image obtained from an x-ray 

film of fingernails is blurry and illegible. In addition, x-ray radiation may induce harmful 

changes to the body [26]. The final method, magnetic resonance imaging (MRI), provides 

enhanced detail in structure but not be ideal for fingernails, which possess a low 

concentration of water. Staining fingernails would be very beneficial for this approach 

but not a viable option for in-vivo study [26]. Contrary to the above methods, ultrasound 

provides quantitative and qualitative data from A-scans, B-scans and C-scans. It has the 

ability to non-invasively extract data from in-vivo subjects and causes minimal 

irradiation to tissues [27]. Also, its depth penetration and resolution can be interchanged 

depending on the frequency of the transducer [27].  

The application of ultrasound in A-mode to explore fingernails was first 

investigated in-vivo by Finlay in 1987, and soon after by Jemec in 1989 [28, 29]. There 

have since been studies by Maeva, Wollina and Hirai involving B-mode ultrasound but 

limited data and trials have been performed in regards to a more in-depth quantitative 

understanding of fingernails [30, 31, 32]. Different methods have been explored 

including postmortem, in-vitro and low-frequency ultrasound analysis [17, 28, 29]. 

Earlier studies using ultrasound for both quantitative and qualitative assessment have 

been performed by Jemec, Finlay, Hirai and Wollina with frequencies 16 MHz, 20 MHz, 

30MHz and 50 MHz [17, 28, 29, 30, 31, 32]. The target of the study by Jemec et al. was 

to calculate the speed of sound in fingernails using A-mode ultrasound to determine TOF 

and a micrometer to measure fingernail thickness of postmortem samples [29]. The 

articles by Finlay et al. aim to also determine the sound speed in healthy dry versus 

hydrated fingernails in-vivo using similar techniques for measurement [17, 28]. Hirai et 

al. sought to image the fingernail in B-mode ultrasound in-vivo deformities [32]. In 

contrast to previous studies, Wollina et al. determined nail plate and nail matrix volumes 

in healthy patients compared to those with diseases of the integumentary system [31]. 
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Lastly, a study by Maeva et al. was performed in-vivo on healthy volunteers to image the 

layers of the fingernail using B-mode ultrasound [30]. With regards to ultrasound, very 

little quantitative research has been performed on fingernails, and so further investigation 

is open to discovery. 

 

1.3 General Concepts of Ultrasound 

Ultrasonic is the term given to sound waves of frequencies higher than those 

which can be perceived by humans. These waves are characterized by a frequency above 

20,000 Hz. Sonic waves, or audible sound, ranges from 20 – 20,000 Hz, and subsonic 

waves are below 20 Hz frequency [26]. Ultrasound is characterized by a propagating 

acoustic or pressure wave, able to transfer mechanical energy while travelling to and 

from media. An incident acoustic wave strikes a medium interface, and then is partially 

reflected and partially transmitted. Reflection from different interfaces over a period of 

time can be recorded, and the time lag between signal receptions used to calculate TOF. 

A transducer is the term given to a device that converts ultrasonic pulses to digital 

signals, and vice versa. Two modalities in which ultrasonic signals can be sent and 

received will be discussed later on. 

The applications of ultrasound in both the medical and industrial field are very 

useful due to the fact that it is non-invasive, non-radiating, relatively inexpensive and it 

provides very good temporal resolution [26]. Ultrasound is essentially harmless on the 

basis that it is not used at high intensities for long exposure times. The Food and Drug 

Administration (FDA) specifies the permitted acoustic output levels for diagnostic 

ultrasound safety regulations as follows [33]: 
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Table 1.2: Ultrasound exposure levels set by the FDA [33]. 

Application 
Intensityspatial peak temporal average 

(mW/cm2) 

Intensityspatial peak pulse average 

(mW/cm2) 
Mechanical 

Index 

Peripheral Vessel 720 190 1.9 

Cardiac 430 190 1.9 

Fetal Imaging, 

abdominal, 

intraoperative, pediatric, 

small organ, neonatal 

cephalic, adult cephalic 

94 190 1.9 

Ophthalmic 17 28 0.23 

 

During propagation through a non-uniform medium there may be undesired 

phenomena such as attenuation, diffraction, dispersion and scattering that may cause 

waves to distort or deviate from their expected paths. These disturbances will be 

discussed in the below sections. Variations in density and compressibility of a medium 

may also cause scattering effects. Interface changes produce scattered reflections upon 

interaction with ultrasonic waves, but these effects decay exponentially over the wave’s 

displacement. A small particle, or point scatterer, disperses the incident wave in all 

directions, causing distortion of the reflected signals. Many small inhomogeneities can 

interfere constructively, causing amplification of the received signal, or destructively, 

causing cancelling-out of the received signal. For the purpose of this thesis we will 

consider materials to be isotropic and homogenous to avoid complicated situations 

arising from such conditions. 

1.3.1 Ultrasonic Transducer Design and Operation 

Ultrasound waves can be created via a piezoelectric crystal governed by the 

principle of the piezoelectric effect. This principle states that when an electric field is 

applied to a piezoelectric material, or crystal, it is displaced or deformed as to create a 

pressure wave in turn of a frequency [34]. Oppositely, if a pressure wave of definite 

frequency is incident on the crystal, it deforms and consequently induces an electric field 

[34]. A computer reads the shift in electric field as a voltage change via electrodes 
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attached to the crystal, and its signal is processed and displayed [34]. A transducer is the 

name given to the housing in which the crystal is contained, alongside other components 

such as a backing and matching layer. As the crystal displaces inside the transducer it 

creates internal waves which are then reflected back to the crystal from the surrounding 

housing, manifesting as noise. These internal waves are reflected back into the crystal 

which are unwanted. In order to reduce the reflections as much as possible, the crystal 

must operate at maximum amplitude which is satisfied at its fundamental resonant 

frequency [34]. This corresponds to the crystal having a thickness that is half the 

wavelength of the emitted wave [34]. A specific material called a backing layer is 

attached to the back of the crystal, which has an acoustic impedance very different than 

that of the crystal to encourage reflection of backscattered waves during deformation so 

they are repelled forwards out of the transducer [35]. The backing layer also acts as a 

dampener to exponentially attenuate the displacement of the crystal’s vibrations, so as for 

it not to vibrate for very long periods of time, but rather in short bursts [34]. In front of 

the crystal another layer is present called a matching layer. This functions opposite of the 

backing layer to transmit as much of the emitted wave as possible through a medium 

[35]. The matching layer acts to increase the transmittance of the wave into a medium by 

matching the acoustic impedance of the crystal and material being examined [35]. The 

thickness of the matching layer is vital because when the thickness is equal to an odd 

integer of ¼ wavelength of the emitted wave the wave is then efficiently transmitted [34]. 
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Figure 1.2: Schematic of the internal parts of an ultrasound transducer. 

There are two popular modalities of obtaining ultrasonic measurements: pulse-

echo mode and through transmission mode. Pulse-echo ultrasound operates on the 

principle of reflection, whereby a transducer emits a sound wave and ‘listens’ for a 

reflected signal back to the same transducer after a brief time delay. This method works 

best when the interfaces are highly reflective and the subject’s anatomy does not feasibly 

permit the placement of a second transducer. Through transmission operates on the 

principle of transmission, whereby two transducers are placed on opposing sides of the 

object to be examined. One transducer emits a sound wave and the other transducer 

listens for a response wave on the other end. This method works best when reflection and 

signal are weak from the object. This thesis is based on a transducer operating in pulse-

echo mode. 
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Figure 1.3: Diagram showing a) pulse-echo method and b) though transmission method passing through a 

boundary of different acoustic impedance than the coupling agent. 

 

1.3.2 Ultrasonic Modes and Resolution [36] 

Signals received by the ultrasonic transducer can be acquired in four main modes. These 

modes have different applications based on the complexity of the sample’s shape being 

measured, changes to the sample in real-time, and the device’s scanning capabilities. The 

four modalities are described below in terms of a single transducer both emitting and 

receiving ultrasonic signals: 

 

1) Amplitude mode (A-scan) 

As an emitted wave is reflected and received back to the transducer, the 

piezoelectric crystal’s displacement is read as a voltage change by electrodes attached to 

the crystal. The voltage amplitude is recorded as a function of time and presented on a 

display screen. In A-scans, the transducer is stationary. 
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Figure 1.4: Schematic showing on top: a transducer emitting and receiving ultrasonic signal from each interface 

boundary, and on bottom: the visualization of the A-scan that is seen on a monitor display [26]. 

2) Brightness mode (B-scan) 

As the transducer is translated across the object, it compiles many A-scans for 

each step of its movement. When these numerous A-scans are combined alongside one 

another, their values for amplitude can be converted to grayscale to form a two-

dimensional image. This image represents the TOF amplitude versus A-scan number. 

Typically the gray-scale values of the range of amplitudes are subdivided into 256 shades 

of white to black in an 8-bit system.  

 

3) C-mode (C-scan) 

To create a three-dimensional image the transducer can record B-scans as well as 

an additional translation in the plane perpendicular to that of the B-scan, to form a C-

scan. This image represents the TOF amplitude versus A-scan number in one axis versus 

A-scan number in the remaining third axis. 
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4) Motion mode (M-scan) 

B-scans may be recorded while the object is in motion, yielding a moving image 

similar to that of a video and called an M-scan. In this mode, the amplitude, signal depth 

and line number are often displayed along with the moving image. 

Ultrasonic frequency is directly proportional to resolution, and inversely 

proportional to depth of penetration; thus, high-frequency ultrasound is optimal for 

imaging objects of minimal thickness [37]. There are 3 main resolution labels in an 

ultrasonic beam: axial, lateral, and elevation resolution. Axial resolution is in the 

direction of the wave propagation, lateral resolution is perpendicular to that of axial but 

still in the plane of the propagation, and elevation is in the plane perpendicular to wave 

propagation [37]. Axial resolution is mathematically expressed as the spatial pulse length 

or the number of cycles in a pulse (usually 2 or 3) times the wavelength (λ), all divided 

by two [37]. Another important parameter is spatial pulse length (SPL), which is the 

distance that a pulse occupies in space, from the start of a pulse to the end of that pulse. It 

is related to the axial resolution by [37]: 

 
𝐴𝑥𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑖𝑛 𝑝𝑢𝑙𝑠𝑒

2
𝜆 =

𝑆𝑃𝐿

2
 (1) 

   

The lateral resolution is characterized by the diameter (d) of the pulse wave 

which is greatest in the area before the focal length. When considering a focused 

ultrasound beam the lateral resolution at the focal spot is given by the wavelength 

and radius of transducer (r) [37]: 

 

 
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑟2

𝜆
 

 

(2) 
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Figure 1.5: Schematic showing the three types of transducer resolution: a) elevation resolution, b) lateral 

resolution and c) axial resolution. 

Lastly, elevation resolution can be related to the beam width similar to lateral 

resolution. If the aperture at the transducer end is circular, the lateral and elevation 

resolution are the same; conversely, if the aperture is in any shape other than a circle, the 

values will be different. 

 

1.3.3 Acoustic Wave Propagation [38] 

The study of acoustic waves is governed by the wave equation, which describes a 

wave propagating through a continuous medium. There are several types of acoustic 

waves including waves that propagate parallel to the direction of motion (longitudinal 

waves) and waves that propagate perpendicular to the direction of propagation 

(transverse or shear waves). Many methods of obtaining and solving the wave equation 

have been derived, but these derivations put more emphasis on the acoustic derivation of 

a pressure wave for a fluid. The wave equation in one dimension begins as a linear 

equation of motion by utilizing the equation of state, the continuity equation, and Euler’s 

force equation. 

The ideal gas law starts the derivation by acting as the equation of state: 

 𝑃𝑉 = 𝑛𝑅𝑇 (3) 

Where P is the pressure, V is the volume, n is the number of mols, R is the ideal gas 

constant (R = 8.3145 m3 Pa mol-1 K-1) and T is the temperature in Kelvin. 
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An adiabatic process is considered in which no energy is transferred between the 

system and its surrounding and so we can express the pressure as a function of a constant 

expressed as the partial derivative of pressure with respect to density multiplied by the 

density (ρ): 

 
𝑃 =

𝜕𝑃

𝜕𝜌
𝜌 (4) 

Separating the pressure and density into components we obtain: 

 
𝑃 − 𝑃0 = (

𝜕𝑃

𝜕𝜌
)(𝜌 − 𝜌0) (5) 

The adiabatic bulk modulus (B) for a fluid, the condensation (s) and the acoustic pressure 

(p) is given by: 

 
𝐵 =  𝜌0(

𝜕𝑃

𝜕𝜌
) (6) 

 𝑠 =
𝜌 − 𝜌0

𝜌0
 (7) 

 𝑝 = 𝑃 − 𝑃0 (8) 

Thus, now the pressure can be simply expressed as a linear equation of state as a function 

of the bulk modulus and the condensation: 

 𝑝 = 𝐵𝑠 (9) 

The conservation of mass in one dimension is given by the continuity equation: 

 𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) = 0 (10) 

Where 𝑢 is the flow velocity of a fluid. 

Again linearizing the continuity equation yields: 

 𝜕

𝜕𝑡
(𝜌0 + 𝜌0𝑠) +

𝜕

𝜕𝑥
(𝜌0𝑢 + 𝜌0𝑠𝑢) = 0 (11) 

Noting that density doesn’t change with time or location and some further simplification 

produces the new continuity equation: 
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 𝜕𝑠

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
= 0 (12) 

Lastly we consider Euler’s force equation using material derivatives: 

 
𝜌

𝑑𝑢

𝑑𝑡
+

𝑑𝑃

𝑑𝑥
= 0 (13) 

Linearizing the above equation yields: 

 
(𝜌0 + 𝜌0𝑠)(

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
)𝑢 +

𝜕

𝜕𝑥
(𝑃0 + 𝑃) = 0 (14) 

Simplifying we obtain the one dimensional Euler force equation: 

 
𝜌0

𝑑𝑢

𝑑𝑡
+

𝑑𝑃

𝑑𝑥
= 0 (15) 

The time derivative is then applied to the continuity equation as well as 

multiplying by ρ0 and t the spatial derivative is applied to the force equation. The two 

equations are subtracted and the equation of state is substituted to produce: 

 −𝜌0

𝐵

𝜕2𝑝

𝜕𝑡2
+

𝜕2𝑝

𝜕𝑥2
= 0 (16) 

Finally the acoustic wave equation for pressure is derived as: 

 𝜕2𝑝

𝜕𝑥2
+

1

𝑐2

𝜕2𝑝

𝜕𝑡2
= 0 (17) 

Where c is the speed of sound expressed in terms of the bulk modulus and density [39]: 

 

𝑐 = √
𝐵

𝜌0
 (18) 

There are a multitude of methods to solve for the wave equation one of which 

involves the use of the method of separation of variables. Plane wave solutions using 

separation of variables in Cartesian coordinates (x, y, z) considering the boundary 

condition of the wave being fixed at both ends have the form: 
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𝑝(𝑥) = ∑ sin (

𝑛𝜋𝑥

𝑙
) [𝑎𝑛 cos (

𝑛𝜋𝑐𝑡

𝑙
) + 𝑏𝑛 sin (

𝑛𝜋𝑐𝑡

𝑙
)]

∞

𝑛=1

 (19) 

Where an and bn are amplitudes determined by the initial conditions of the wave, n is the 

index number starting after zero, l is the location of one end of the wave and x is the 

current location under consideration. The solution describes both a forward and backward 

travelling wave. 

 

1.3.4 Time-of-Flight and Sound Speed [39] 

When an ultrasonic wave pulse is directed perpendicular to several media 

interfaces, different signals are received based on the reflections from each of these 

interfaces. The time lapse between the signal’s emission from and reception at the 

transducer is deemed the time-of-flight (TOF). TOF depends on many factors, including 

sound speed, thickness, density and temperature of the media. Based on the TOF between 

two separate interfaces, the sound speed (v) of that media can be determined by the 

simple equation: 

 
𝑣 =

2(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)

𝑇𝑂𝐹
 (20) 

   

The factor of two in the numerator is included because the waves traverse twice 

the distance; once from the boundary, and once back. Some examples of sound speed in 

biological matter are outlined in Fig. 1.6. Human tissues tends to have relatively high 

water content, reducing their sound speeds while other materials such as metals tend to 

have stronger molecular bonds allowing increased speeds of wave propagation. 
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Figure 1.6: Sound speed of various tissue media subject to temperatures between 20-37ᵒC [39]. 

 

1.3.5 Reflection, Transmission and Acoustic Impedance of Sound Waves 

[39] 

Acoustical impedance (Z) is a common property of a media described by its 

density and sound speed: 

 𝑍 = 𝜌𝑣 (21) 

This is a property that is dependent on both frequency and position, and influences wave 

propagation between media interfaces. When a wave makes contact with a medium of 

different acoustic impedance, its direction is altered due to the change in properties. 

Below in Table 1.3 are examples of the acoustic impedance of some common tissues: 
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Table 1.3: Acoustic impedance of common biological tissues and molecules. 

Medium Acoustic Impedance 

(MRayl) 
Reference 

Dry air (1 atm) 0.0004 

[40] 

Human fat 1.38 

Water (50ᵒC) 1.54 

Human blood 1.61 

Human kidney 1.62 

Human muscle 1.70 

Cancellous human bone 1.54 - 2.2 
[41] 

Cortical human bone 4 - 8 

Reflectance (R) is defined as the ratio between the amplitudes of a reflected signal 

and that of its incident signal; similarly, transmittance (T) is defined as the ratio between 

the amplitudes of a transmitted signal and that of its incident signal. Together, reflectance 

and transmittance sum to 1 or 100% [39]: 

 
𝑅 =

𝐴𝑟

𝐴𝑖
=

𝑍2𝑐𝑜𝑠𝜃𝑖 − 𝑍1𝑐𝑜𝑠𝜃𝑡

𝑍2𝑐𝑜𝑠𝜃𝑖 + 𝑍1𝑐𝑜𝑠𝜃𝑡
 

 

(22) 

   

 
𝑇 =

𝐴𝑡

𝐴𝑖
=

2𝑍2𝑐𝑜𝑠𝜃𝑖

𝑍2𝑐𝑜𝑠𝜃𝑖 + 𝑍1𝑐𝑜𝑠𝜃𝑡
 (23) 

Where Z1 and Z2 are the acoustic impedances of the first and second medium and 𝜃𝑖 and 

𝜃𝑡 are the incident angle and transmitted angle of the wave. 

The intensity of a propagating wave is given by [39]: 

   

 
𝐼 =

1

𝑇
∫ 𝑃(𝑡)𝑣(𝑡)𝑑𝑡

𝑇

0

 (24) 

Where T is the period of the wave, P(t) is the pressure at a specific time and v(t) is the 

sound speed at a specific time.  
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This equation is reserved for a wave passing through an area perpendicular to the 

propagation direction. The intensity for a plane wave is modelled by [39]: 

 
𝑣(𝑡) =

𝑃(𝑡)

𝑐0𝜌0
 (25) 

 

 
𝐼 =

|𝑃(𝑡)|2

2𝑐0𝜌0
 (26) 

Where c0 is the reference sound speed, ρ0 is the reference acoustic impedance and 

intensity is in units of average energy per unit area. 

As mentioned previously, a wave may reflect and/or transmit at the arrival of an 

interface of media equipped with much different acoustic impedance than the previous 

media. This interaction can be modelled by Snell’s law (Fig. 1.7) [39]: 

 𝑠𝑖𝑛𝜃𝑖

𝑐1
=

𝑠𝑖𝑛𝜃𝑟

𝑐1
=

𝑠𝑖𝑛𝜃𝑡

𝑐2
 (27) 

Where 𝜃𝑖 , 𝜃𝑟 , 𝜃𝑡 are the angles of the incident, reflected and transmitted waves 

respectively, and 𝑐1, 𝑐2 are the wave velocities in medium 1 and 2. If the acoustic 

impedances of the two media are very different the reflectance will be large and 

transmittance small. 

 

Figure 1.7: Ray diagram illustrating how an incoming ray is both reflected (r) and transmitted (t) when incident 

on a second media of different acoustic impedance. 
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1.3.6 Scattering, Absorption, Diffraction and Attenuation [39, 42] 

In reality, most media are not 100% homogenous, and so it would be rare to 

describe a medium in which waves truly travel in entirely predictable directions. The 

incident waves will more realistically diverge from their straight path once in contact 

with the new medium, due to inevitable non-uniformities in compressibility, density or 

deformities along that trajectory in localized areas. The process is deemed scattering, and 

occurs in all forms of radiation including light and sound alike. The non-uniformities 

cause oblique reflections of the waves which will alter the data received from that object. 

To compensate for these reflections one must consider the field difference from before 

the object was present to when the object was introduced. For example, the total pressure 

field at a position x and time t should be: 

 𝑝(𝑥, 𝑡) = 𝑝𝑖(𝑥, 𝑡) + 𝑝𝑠(𝑥, 𝑡) (28) 

Where pi is the incident pressure field with no object present and ps is the scattered 

pressure field from the object. 

Another form of information loss is from absorption, whereby a wave’s energy is 

absorbed at the interface as opposed to being reflected. The absorbed energy is converted 

to heat, chemical energy or light, but also delivered throughout the object. In the case of 

this thesis, scattering and absorption were not taken into consideration for the sake of 

simplicity; however it is to be acknowledged that these phenomena contribute to signal 

error. The cumulative effects of absorption and scattering are considered in the process of 

attenuation. Attenuation takes into account the intensity loss after a beam of waves is 

transmitted through a medium, and is represented by the attenuation coefficient. The 

output intensity considering attenuation is given by: 

 𝐼(𝑥) = 𝐼(0)𝑒−2𝛼𝑥 (29) 

Where I(x) is the final intensity transmitted through the medium, I(0) is the initial 

intensity of the beam, α is the attenuation coefficient and x is the displacement through 

the medium. 
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The attenuation coefficient can be determined from the initial and transmitted 

intensities of pressure in units of N/cm-MHz or dB/cm-MHz. This can be performed if 

the attenuation coefficient is not extensively large so that p0
2 is proportional to I0: 

 
𝛼𝑁 =

1

2𝑥
ln

𝐼(0)

𝐼(𝑥)
 (30) 

Where αN is given in units of N/cm-MHz in the above equation but can be converted to 

αdB [db/cm-MHz] by multiplication of a factor 20log10(e). 

Attenuation coefficients are dependent of frequency, temperature and pressure but are 

seen to be approximately linearly proportional to frequencies from 1-50 MHz and in soft 

tissues can be predicted roughly by 0.3 dB/cm-MHz [43]. 

 Diffraction occurs when multiple interfaces are in the path of the sound wave. 

Due to the differing acoustic impedances and indices from refraction from the interfaces, 

sound waves ‘bend’ or alter their angle of traversal after entering a new medium. This 

causes slight deviations in the perceived measurements of a signal upon reception from 

several layers. For example, an incident beam normal to an interface will be seen to have 

the same TOF or thickness as the actual sample, since the angle of incidence is zero. 

Should that angle veer from zero, the perceived and actual thicknesses, or TOF’s, will 

differ due to diffraction (Fig. 1.8). For small incident angles, as in the case of this thesis, 

the effects of diffraction can be disregarded. 
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Figure 1.8: Diagram showing the effects of diffraction on one interface with different acoustic impedance. The 

ray d1 is the expected propagation direction of the incident wave and the ray d2 is the actual propagation 

direction due to diffraction. 

1.3.7 Elasticity [42] 

When a solid object is deformed by twisting, stretching or compression, its ability 

to restore back to its original shape is called elasticity. Applying stress to a solid such as a 

tension or compression equates to a force being applied per unit area. The amount of 

deformation due to a stress being applied is called strain, and is defined as the change in 

shape from its original configuration to an altered one. Stress and strain are proportional 

to each other by means of the modulus of elasticity, otherwise known as Young’s 

modulus (E or Y). 

 
𝐸 =

𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
=

𝐹𝐿

𝐴𝛥𝐿
 

 

(31) 

Where F is the force, L is the original length of the solid, A is the area that is deformed 

and, ΔL is the change in length after deformation. 

The speed of sound in an isotropic solid is related to the Young’s modulus by: 

 

𝑣 = √
𝐸

𝜌

1 − 𝜎

(1 − 2𝜎)(1 + 𝜎)
 (32) 
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Where 𝜎  is Poisson’s ratio. 

If the cross-sectional area under deformation is very small in comparison to the 

wavelength of sound, then Poisson’s ratio can be neglected and the equation simplifies to: 

 

𝑣 = √
𝐸

𝜌
 (33) 

 

1.3.8 Wave Types: Longitudinal, Transverse and Surface 

As mentioned previously, the most basic wave formations are comprised of 

longitudinal and transverse waves that travel in the bulk of a medium. At the boundary of 

a solid-liquid or liquid-solid interface there are several types of acoustic waves that are 

produced. Longitudinal waves are present within angles less than the critical angle. At 

angles completely or almost perpendicular to a different boundary, longitudinal waves 

dominate and yield the strongest energy intensity as shown in Fig. 1.9. Transverse or 

shear waves are created due to the stress and strain induced by the incident wave on a 

solid isotropic medium. These waves are produced at angles equal to and larger than the 

critical angle from a liquid to solid (smaller to larger impedance changes). The incident 

wave causes vibrations and distortions in the molecular structure of the solid creating 

lateral displacement among particles perpendicular to the propagation direction and 

forming a shear wave.  
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Figure 1.9: Graph showing the intensity of longitudinal and shear waves based on incident angle [44]. 

Unlike longitudinal waves, shear waves can be polarized in any direction; thus, 

shear waves yield greater sensitivity toward detecting even the smallest structural 

deformities. The longitudinal sound speed and shear sound speed are related by [39]: 

 
𝐶𝐿

𝐶𝑆
= √

2(1 − 𝜎)

1 − 2𝜎
 (34) 

Where CL is the longitudinal sound speed, CS is the shear sound speed and σ is Poisson’s 

ratio. 

The remaining wave type in solids is the surface wave, or Rayleigh wave, named 

after Lord Rayleigh in 1885 [39]. This is a wave that propagates along the surface of the 

solid interface and does not penetrate far - only up to one wavelength in depth [39]. 

These waves include both longitudinal and transverse motion meaning the particle 

motion is along an elliptical outward motion and decreases exponentially with distance 

[45]. These waves are mainly used to inspect surface defects of solid materials with high 
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sensitivity. Rayleigh wave sound speed is slightly smaller than shear wave sound speed 

and can be approximated through an equation by Viktorov [45]: 

 
𝐾 =  

𝐶𝑅

𝐶𝑆
=

0.87 + 1.12𝜎

1 + 𝜎
 (35) 

Where CR is the Rayleigh sound speed. 

 

1.3.9 Near and Far Field Effects 

When considering the behaviors of a focused ultrasonic beam one must 

distinguish between the near field (Fresnel region) and far field (Fraunhofer region) based 

on the location of the point of observation. Different effects are apparent in these regions 

due to dispersion of the beam over distance. The far-field region is defined as      

Equation (36) and the near-field region is defined as Equation (37). In the far-field, the 

beam intensity contains more uniformity due to larger divergence of the beam while in 

the near-field, beam intensity is more varied due to more focusing.  

 𝑎˃˃𝑟2𝑓               𝑓𝑎𝑟 − 𝑓𝑖𝑒𝑙𝑑 (36) 

 

 𝑎˂˂𝑟2𝑓               𝑛𝑒𝑎𝑟 − 𝑓𝑖𝑒𝑙𝑑 (37) 

   

Where a is the location of viewing, r is the transducer radius and f is the frequency. 

Between these two regions there is an area of focus deemed the focal zone. This 

intermediate region provides the narrowest beam width and greatest beam focus. It takes 

part half in the far-field and half in the near-field. Within the focal zone there is a spot of 

maximum focus called the focal point. This is the optimal location for imaging in 

ultrasound because it provides the greatest intensity and resolution. 
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Figure 1.10: Diagram of the regions within a focused ultrasonic beam from a transducer with radius ‘r’. These 

regions are outlined as the near-field, far-field and focal zone where the focal point is the single point of 

maximum lateral resolution along the beam. 
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Chapter 2 PRELUSIVE FINGERNAIL ASSESSEMENT 

– A CLINICAL DATA COLLECTION 

 

Summary: This chapter aims to investigate whether fingernail defects are identifiable by 

conducting a preliminary data collection survey on patients receiving chemotherapy. It 

also outlines the first of the two methods of investigation used in this thesis to 

characterize properties of fingernails with ultrasound. 

------------------------------------------------------------------------------------------------------------ 

2.1 Investigation of Chemotherapy Affected Fingernails 

As mentioned previously, fingernails may provide valuable information about the 

health of the human body, and so, the exploration of their changes due to harmful effects 

on the body was of interest. A preliminary survey was conducted on patients receiving 

chemotherapy to examine whether chemotherapeutic treatments are correlated with the 

physical effects observed on the fingernails as described in literature. This was to be done 

by demographic, neuropathy and ultrasonic assessments.  This application could provide 

more insight into the limited investigation of using ultrasound to study chemotherapeutic 

effects [13]. The investigation of the changes occurring on the fingernails via ultrasonic 

measurement is a possible quantitative method for assessing the development and 

severity of one’s bodily response to chemotherapeutic treatment adjunctive to current 

clinical examination methods. The benefits of high frequency ultrasound include the fact 

that it is non-invasive, provides increased resolution of nail plate echogenicity, and does 

not induce harmful radiation. This article provides initial evidence that ultrasound can be 

used to assess the relationship between the harmfulness of anticancer drugs to the body, 

and the changes in fingernail TOF magnitude over successive measurements during 

treatment. Ultrasound has been shown to be an effective method of assessing ungual 

properties in cases of normal, healthy patients and those affected by skin diseases, as 

validated by several sources; however, this is the first instance in which ultrasound has 
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been applied in the exclusive investigation of the effects of chemotherapy on the 

fingernail. [18, 29, 30, 31, 46]. 

 

2.2 Fingernail Deformities Caused by Chemotherapeutic Treatment 

Fingernails are affected by many factors, from alterations within the body to 

external influences such as the environment. One case of interest is the effects on 

fingernails during chemotherapeutic treatment. Chemotherapy involves the intravenous 

administration of anticancer agents in effort to eradicate proliferating cancer cells. The 

distribution of these drugs induces many adverse reactions throughout the body such as 

those seen in fingernails, which include: onycholysis, discoloration, Muehrcke’s lines, 

splinter hemorrhage, subungual hematoma and complete nail fracturing or detachment 

[47, 48, 49, 50]. Figure 2.1 illustrates some of the likely defects observed during cancer 

treatment and Table 2.1 describes various defects likely present during chemotherapy. 

Chemotherapy is the treatment of cancer by means of administering cytotoxic 

drugs to eradicate tumors [46, 51, 52, 53]. Taxanes are a group of antitumor drugs that 

include Paclitaxel and Docetaxel; these drugs effectively prevent cell division by altering 

the formation and disassembly of microtubules [54]. The treatment of cancer with 

chemotherapeutic drugs is often coupled with a series of adverse effects due to the 

damage caused to surrounding healthy cells. As previously stated, the effects of 

chemotherapy on the body extend to the nails via the vascular system, whereby blood 

flow complications such as hemorrhages or subungual hematomas may ensue              

[47, 55, 56]. It has been proposed that the harmfulness of certain drugs to the body can be 

determined by the extent of damage and changes detected in the nails [28]. During the 

advancement of these defects over time, the patient will likely experience discomfort and 

pain from inflammation of subungual or external tissue, nail thinning or cracking, nail 

detachment exposing the soft nail bed, numbness at the fingertips, and a loss in grip [47]. 
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Figure 2.1: Examples of fingernail deformities showing a) Mee’s lines b) onycholysis and c) nail fracturing/ 

detachment from three different patients from the data collection. 

 

Table 2.1: General defects that arise in the fingernails according to literature [47]. 

Nail Defect Definition 

Mee’s Lines White transverse lines across nail plate 

Beau’s Lines Traverse groves or ridges across nail plate 

Muehrcke’s Lines White traverse lines across nail plate separated by pink nail bed 

Onycholysis Nail plate separation from nail bed 

Subungual Hematoma Hemorrhage of the nail bed (red or black color) 

Onychomadesis Longitudinal groove in the center of the nail plate 

Splinter Hemorrhage Many small, longitudinal brown lines at distal end of nail bed 

Paronychia Inflammation and discoloration of proximal nail fold 
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2.3 Materials and Methods of Clinical Fingernail Investigation 

2.3.1 Subject Selection Criteria 

The number of patients participating in this data collection was limited to those 

consenting to the research and undergoing taxane regimens. The patients were allowed to 

have previously received Adriamycin and Cyclophosphamide (AC) but no other form of 

chemotherapy. This data collection was focused on patients with taxane (Docetaxel/Taxol 

and Paclitaxel/Taxotere) as part of their weekly or biweekly regimens ranging from 6 

to12 week regimen periods. This study was approved by the ethics committee of the 

Metropolitan Hospital in Windsor, Ontario, and the University of Windsor. The 

measurements were performed in-vivo on patients of any age demographic and any 

ethnicity. Other medical conditions were not considered in the criteria and previously 

damaged nails were included.  

 

2.3.2 Study Procedure 

The ultrasonic system used in this study operated in real-time, pulse-echo mode 

with a transducer central frequency of 50 MHz and 7 mm focal length. Using water as the 

coupling medium between the transducer tip and patient’s fingernail, B-scans were taken 

on two fingers from each hand: left and right index fingers, and left and right middle 

fingers. These fingers were chosen due to their fastest growth rates which would likely 

show earliest signs of defects [17]. The nail surface was held steady by inserting the 

finger into a holder designed to limit its movement. The transducer was aligned to the 

middle of the selected nail closest to the cuticle at the beginning of each measurement. 

Once satisfactory signals of maximum amplitude were obtained from reflections at both 

the surface of the nail plate and the interface between the nail plate and nail bed, a B-scan 

was initiated across the fingernail, starting partially on the cuticle closest to the proximal 

nail fold and ending slightly past the edge of the fingernail. During this time, the patient 

remained completely motionless so as to avoid disrupting the scan. The total distance 

traversed by the transducer across the fingernail was 16 mm. Photographs were also taken 

after each measurement to monitor visible changes in the ungual structure and 
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discoloration of the nail bed or nail matrix. Three sets of measurements were taken for 

each patient: starting before taxane treatment, in the middle of treatment and on the last 

day of treatment.  

Upon completion of the three sets of measurements, B-scans were compiled and a 

two-dimensional grayscale image was generated. Starting closest to the cuticle, A-scans 

were selected to measure the TOF from the top surface of the nail plate to the interface 

between the nail plate and nail bed as shown in Fig. 2.2. Nail density, hydration and 

thickness may change in the presence of diseases, causing alterations in the speed with 

which the ultrasonic waves propagate through the nail; thus, since the speed of sound is 

not uniform throughout the nail, this study reports measurements in terms of TOF rather 

than thickness. [17, 28]. 

 

Figure 2.2: B-scan of fingernail outlining the TOF between the top and bottom interfaces. The vertical axis 

represents the TOF amplitude in gray-scale values and the horizontal axis represents the number of A-scans 

traversed along a fingernail from cuticle to distal end. The two darker curves represent the top and bottom 

fingernail boundaries. 

 

2.4 Device Prototype Design  

To accommodate an ultrasonic transducer to our application on fingernails, a finger 

holder was required to sit comfortably and reliably on top of the fingernail. A custom 

carcass was designed and 3D printed to personal specifications of size and shape to allow 
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greatest usability and transducer motion. The holder allowed the transducer to translate 

forward and backward, as well as up and down to attain focus at the focal point. A 

spring-loaded actuator stepper motor was attached to allow complete control of 

displacement speed and distance by user specifications via software coding. The stepper 

motor was regulated by a controller board which was also connected to a laptop or tablet 

display. 

 

Figure 2.3: Ultrasound prototype for fingernail assessment in data collection. The 50 MHz transducer was 

attached to a 3D printed carcass and a spring-loaded stepper motor to allow B-scans to be taken longitudinally 

across the fingernail. A container was also made so that the fingernail can be inserted and submersed in water to 

act as the impedance matching layer to the transducer. 

 

2.5  Transducer Parameters and Setup for Resolution Calculation 

A 50 MHz transducer was custom-ordered to meet our requirements based on 

transducer frequency and cost. The frequency was chosen due to several reasons. In order 

to view fingernail microstructure, we required a wavelength of at least 200 µm but with 

as high resolution as possible provided by a high ultrasonic frequency. Also, given high 

attenuation in keratin, the reflected ultrasound intensity must be high enough at a 
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maximum fingernail thickness depth of minimum 1 mm. Longitudinal waves were of 

interest for this data collection as opposed to transverse waves for two reasons: first, 

because of the high attenuation of keratin in fingernails, and second, since such high 

frequency waves would cause a faster signal decay along larger distances that would be 

required in shear methods. Also, the roundness of the fingernail would cause unnecessary 

difficulty in patient positioning for detecting shear waves. Ultimately, for the parameters 

of interest, longitudinal waves what would be required with transverse waves. Also the 

roundness of the fingernail would cause extra problems in positioning for detection of 

shear waves. Further testing was done on the transducer to determine the lateral and axial 

resolution of the ultrasonic beam produced. This was accomplished with the use of a 

motorized displacement arm attached to a hydrophone, or pinducer, in a large water bath 

(Fig. 2.4). The pinducer was model Onda HGL-0400 with 0.25-20 MHz broadband 

frequency range at ±3 dB of the signal amplitude and 400 µm aperture size. The sampling 

frequency for the pinducer was 2.5x109 Hz. A pulse generator and trigger generator were 

attached to both transducers to ensure signal timing was coordinated to allow sending and 

receiving from each end. The pulse generator operated at 100V with a pulse repetition 

rate of 200 Hz. Due to the nature of the pinducer, low-pass and high-pass filters were 

applied to limit its frequency range to 1-20 MHz. According to the pinducer data sheet 

provided with its purchase the amplitude error associated with using frequencies 0.5-1 

MHz are ±1.5 dB, 1-15 MHz are ±1 dB and 15-20 MHz are ±2.2 dB. 

The motorized arm allowed precise movement of the pinducer in three 

dimensions. The transducer was first carefully aligned to directly face the tip of the 

pinducer. The robotic arm then moved in a plane axial to the transducer beam up, down 

and backward, starting closest to the transducer surface and moving away. The pressure 

distribution of the ultrasonic beam in water was recorded and the focal area and focal 

spot were determined from MatLab software. The axial and lateral displacements of the 

robotic arm were set to the smallest possible values on the software, which corresponded 

to 0.25 mm in both directions. The beam distribution was then plotted based on the 

normalized pressure within a color image (Fig. 2.5). The image shows the focal zone as 

well as the focal spot. The red region shows the highest intensity, and the white dot 

represents the pixel with maximum intensity corresponding to the focal spot in water. The 



www.manaraa.com

34 

 

white dashed line is along the lateral direction of the beam and helps pinpoint the location 

of the focal spot. By using the sound speed of 1482 m/s and density 1000 kg/m3 of water, 

the focal distance was calculated to be 7.0±0.1 mm. For collision safety precautions, the 

pinducer was not able to be touching or too close to the transducer tip; hence, the x-axis 

of Fig. 2.5 does not start at zero. The lateral focal zone of the beam intensity was 

calculated along the white dashed line and at -6 dB of the normal Gaussian beam 

distribution corresponding to the full width half maximum (FWHM) (Fig. 2.6). This 

value of lateral focal zone FWHM was calculated to be 2.1±0.1 mm. The axial focal zone 

of the beam intensity was calculated perpendicular to the white dashed line and at -6 dB 

of the normal Gaussian beam distribution corresponding to the full width half maximum 

(FWHM) (Fig. 2.7). This value of axial focal zone FWHM was calculated to be     

3.9±0.1 mm. 
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Figure 2.4: Diagram showing the setup used to determine transducer resolution using a robotic moving arm, 

pulse generator, trigger generator, pinducer, 50 MHz transducer and display monitor. The pinducer was placed 

as to directly face the transducer and align in all three dimensions. 

 

 

Figure 2.5: Normalized intensity distribution of transducer beam in water. The transducer emitting surface is to 

the left and the beam propagates to the right. The white dot represents the focal spot and the white dashed line 

represents the lateral distribution at the focal spot of the beam. Red represents the highest intensity and blue 

represents the lowest. 
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Figure 2.6: Beam distribution along the lateral focal zone at the focal spot for the FWHM. The black dots depict 

individual data points and the black solid line depicts the fitted Gaussian to the data points. 

 

 

Figure 2.7: Beam distribution along the axial focal zone at the focal spot for the FWHM. The black dots depict 

individual data points and the black solid line depicts the fitted Gaussian to the data points. 
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The axial resolution of the transducer was calculated using a wave pulse emitted 

from the transducer. The wave was modelled as a Gaussian wave, and the axial resolution 

was determined as the FWHM at -6 dB of the Gaussian peak. As an example, the axial 

resolution of the 50 MHz transducer was calculated according to the pulse obtained from 

Fig. 2.8. The axial resolution at -6 dB of the Gaussian distribution of the wave pulse was 

determined to be 0.08±0.01 mm. The lateral resolution is the same as the lateral focal 

depth which in water was 2.1±0.1 mm.  

 

Figure 2.8: Graph showing a single pulse formation in blue from the 50 MHz transducer. The red line is the 

Gaussian distribution for this pulse in the axial direction. 

Other parameters of the transducer, as well as values specified by the user, are 

provided in Table 2.2. This includes software parameters such as driving voltage, pulse 

length, number of samples, pulse repetition frequency, gain, delay time and sample 

averaging. Hardware parameters not mentioned previously include the type of 

piezoelectric material used for pulse excitation and the aperture size of the transducer 

front surface. 
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Table 2.2: Transducer parameters. 

Parameter Result 

Central frequency 50 MHz 

Number of elements 1 element 

Focusing type Spherical 

Piezoelectric material PVDF 

Focal distance 7.0±0.1 mm 

Aperture size 3 mm 

Driving voltage 50 V 

Pulse length 32 ns 

Number of samples per a-scan 2048 

Pulse repetition frequency 60 µs 

Gain +32 dB 

Delay time 3.5 µs 

Averaging 8 points 

Lateral focal zone 2.1±0.1 mm 

Axial focal zone 3.9±0.1 mm 

Axial resolution  0.08±0.01 mm 

Lateral resolution 2.1±0.1 mm 

 

2.6 Results of Data Collection 

2.6.1 Patient Demographics 

In total there were 17 patients tested in the study, including 16 female and 1 male. 

The ages ranged from 35–69 years (mean 54.8 years), with ages 35-49 years accounting 

for 19% of volunteers, 50-59 years accounting for 50%, and over 60 years accounting for 

31%. All of the patients were being treated for breast cancer with Paclitaxel in their 

regimen; none received Docetaxel. Demographics for each patient are shown in        

Table 2.3. Some patients underwent increases or decreases in dosage at the discretion of 

the oncologist; this is depicted in the Table by two values for taxane dosage. An increase 

in dosage meant the patient was experiencing minimal benefit from the chemotherapy 

and thus needed a stronger dose; conversely, severe adverse effects indicated lowering of 
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the dosage by the oncologist. In addition, the patients were divided into groups of weekly 

or biweekly dosed partitions. 

Table 2.3: Patient demographics in order of youngest to oldest for each dosage frequency where F denotes 

female and M denotes male. 

Dosage 

Frequency 

Age 

(years) 
Sex 

Weight 

(kg) 

Taxane Dose 

(mg) 

Weekly 

35 F 64 136 

38 F 87 147-118 

42 F 89 158-161 

50 F 61 130 

51 F 91 162 

65 F 68 145-87 

67 F 58 139-100 

68 F 46 108 

 

Biweekly 

51 F 74 309-324 

52 M 81 343 

53 F 67 309 

54 F 65 291 

55 F 49 255 

58 F 67 300 

60 F 95 350-315 

64 F 78 327 

69 F 79 342-330 

 

2.6.2 Qualitative Observations 

Literature review showed evidence that taxane and Paclitaxel administration 

caused pain and discomfort in the hands of chemotherapy patients. This lead to the 

incorporation of a qualitative grading scale in our measurements to assess such effects, in 

effort to confirm with literature observations. Both visual and verbal assessments were 

conducted on all patients. Also, photographs were taken during each measurement, and 

questions were asked about changes in grip strength and sensations of numbness at the 

fingertips. Fingertip numbness and grip strength questions were based on a NCI CTC v.3 

(National Cancer Institute Common Toxicity Criteria Version 3) grading scale from 0-4, 

where zero represents no change and four represents a drastic change [57]. This is a 

popular neuropathy scale used in the medical field to assess the severity of pain 

sensitivity based on the opinion of the patient. The defects visually observed for all of the 
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patients by means of photographs are outlined in Table 2.4. The main fingernail 

abnormalities that occurred in patients of this study were onycholysis, fingernail 

discoloration, white transverse lines, white lunula, discolorations and fracturing or partial 

detachment of the fingernail. It was not evident whether transverse lines or discolorations 

were limited to the nail bed, or to the fingernail plate, or present simultaneously in each. 

It was also not evident whether the transverse lines remained in the same locations over 

time (meaning the abnormality existed in the nail bed), or if they shifted as the fingernails 

grew (meaning the abnormality could be linked to the fingernail plate). The study showed 

that 47% of patients developed onycholysis and/or discoloration and 24% developed 

white transverse lines and/or white lunula. There were some cases of patients whose 

fingernails broke off partially at different periods of treatment; those patients were 

excluded from the results since not enough data was available to conclude useful 

observations. 

Table 2.4: Presence of total fingernail defects after treatment for weekly and biweekly dosed patients arranged 

in order from youngest to oldest (note that the — signifies that no fingernail defects were recorded) 

Dosage 

Frequency 

Age 

(years) 

Onycholysis 

(detachment 

and/or 

discoloration) 

White 

Transverse 

Lines and/or 

White Lunula 

Weekly 

35   

38   

42   

50 — — 

51   

65   

67 — — 

68   

Biweekly 

51 — — 

52 — — 

53   

54 — — 

55   

58 — — 

60   

64   

69   
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The neuropathy assessment revealed that the majority of patients experienced a 

drastic change in sensation at their fingertips; chiefly, numbness. It was observed based 

on Figure 2.9-2.12 that numbness and grip strength worsened over each measurement, 

and for many cases became very severe. The worst cases of both grip strength and 

numbness were present in patients with ages 50+; this may indicate that chemotherapy 

adversely affects the nervous systems of this demographic more so than those of younger 

patients. This could serve as an early warning sign to reduce dosage quantities of 

Paclitaxel. Fingertip numbness was found to become quite intense, starting halfway into 

treatment and continuing until the end. Grip also worsened over the first half of treatment 

but did not worsen as quickly as the severity in numbness. Some patients did not begin 

with a scaling point of 0 because of previous injury, such as work accidents and previous 

adverse effects of AC treatment. By the end of treatment, many patients by the end of 

treatment complained of difficulties in manual dexterity, such as fastening buttons, 

opening pop tabs, twisting door knobs and lifting small or heavy objects with their 

fingers. All of the visual characteristics of onycholysis, nail discoloration and white 

transverse lines correspond with the literature observations for taxanes. Likewise, the 

change in grip strength and fingertip numbness were also comparable to those of previous 

studies on neuropathy of chemotherapy patients. 

 

Figure 2.9: Weekly dosed numbness neuropathy: Bar graph of weekly dosed patients in order of age and their 

fingertip numbness response for each of the three measurements. 
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Figure 2.10: Biweekly dosed numbness neuropathy: Bar graph of biweekly dosed patients in order of age and 

corresponding fingertip numbness response for each of the three measurements. 

 

Figure 2.11: Weekly dosed grip neuropathy: Bar graph of weekly dosed patients in order of age and 

corresponding fingertip grip response for each of the three measurements. 

 

Figure 2.12: Biweekly dosed grip neuropathy: Bar graph of biweekly dosed patients in order of age and 

corresponding fingertip grip response for each of the three measurements. 
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2.6.3 Quantitative TOF Results 

After acquiring data from three sets of measurements for each patient, the data 

was organized based on each hand’s fingernails. Starting from the cuticle to 3.5 mm 

distally outward the first 10 A-scans were utilized to determine the TOF (in 

microseconds) of the fingernails. The 10 TOF values for each measurement period were 

plotted using box plots. In total, there are 4 box plots for each of the 17 patients. 

Examples of two of the patient’s fingernail box plots are shown in Fig. 2.13 and          

Fig. 2.14. Patterns were determined for each of the three measurements periods based on 

TOF fluctuation changes for all patients. Patients with both weekly and biweekly 

treatment plans experienced a general decrease in the median TOF in each fingernail 

from the first half of their total regimen period. This was observed in 50% of the weekly 

dosed and 100% of the biweekly dosed patients. For the time period between the middle 

and end of treatment the median patient TOF in each fingernail was determined to be in 

general an increase. This was observed in 86% of the weekly dosed and 88% of the 

biweekly dosed patients. Finally, the baseline pre-treatment TOF median of the first 10 

proximal A-scans in each fingernail were determined to have increased compared to 

those at the end of treatment. This was observed in 75% of the weekly dosed and 50% 

biweekly of the dosed patients.  

 Based on statistical analysis of the entire patient pool’s fingernail measurements, 

it was determined that 68% of the measurement differences were deemed statistically 

significant according to two-sample t-tests. This was based on a 95% confidence interval 

which was deemed the limit for statistical significance. This analysis involved matching 

the TOF values obtained at the same fingernail locations with different measurement 

times to correlate their relevance. 
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Figure 2.13: Patient A Fingernail TOF magnitudes: Boxplots showing TOF values for each measurement on the 

left middle, left index, right index and right middle finger of a 51 year old patient undergoing weekly dosing of 

taxane. 
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Figure 2.14: Patient B Fingernail TOF magnitudes: Boxplots showing TOF values for each measurement on the 

left middle, left index, right index and right middle finger of a 58 year old patient undergoing biweekly dosing of 

taxane. 
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2.7 Discussion and Conclusion of Study 

This study suggests the use of ultrasound to assess the degree of chemotherapeutic 

toxicity to the fingernails, as an adjunct to current clinical methods of evaluating the 

patient’s systemic health. Combining these techniques may result in higher patient 

satisfaction, reduced risks of fingernail discomfort and cosmetic flaws, as well as 

establishing earlier prognoses of chemotherapy regimen outcomes. 

During the course of this study, it was observed that nail detachment or 

onycholysis became present in patients most prevalently at the distal and lateral portions 

of the fingernail. Thus, the proximal portion from where the fingernail grows appears not 

as affected as the already-grown fingernail at the distal portion. Although there were TOF 

differences seen throughout regimens, it was observed that the TOF values for the same 

patient were similar before treatment and by the last measurement. It was observed that 

discoloration was possibly present from the nail bed not the fingernail itself, and that the 

only certain visual change to the fingernail was the surface texture. The white transverse 

lines seemed to remain in the same locations but faded away over treatment. Onycholysis 

mostly occurred distally and partially on the sides causing an orange/brown discoloration. 

This discoloration was also occasionally seen more proximally in the middle in the nail 

bed but its location remained constant over time. Conditions from literature that resemble 

these effects include Muehrcke’s lines, splinter hemorrhage and subungual hematoma 

[47]. Muehrcke’s lines are composed of white, transverse lines in the nail bed which fade 

out as pressure is applied, splinter hemorrhage is purple or brown short streaks in the nail 

bed and subungual hematoma is red or black discolorations in the nail bed [47]. It was 

observed that the weekly dosed patients had more cases of onycholysis and discoloration 

as well as larger scaling values for numbness. These findings correlate positively with 

results from Kibata et al. stating that increased docetaxel administrations were directly 

related to the degree of nail alterations [58]. 

During the first half of weekly and biweekly chemotherapy treatments, the 

median TOF decreased, which could be caused by a less hydrated, denser and/or thinner 

fingernail. This could be the result of decreased blood flow to the fingernail which may 

cause disruptions in growth and structure. During the last half of treatment, compared to 

the measurements at the half-way point, fingernail TOF had increased, possibly showing 
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a regeneration of growth and increased blood flow, rehydrating and hardening the 

fingernail. TOF at a specific location is defined in this case as the thickness of the 

fingernail plate divided by the sound velocity. Sound speed is then defined as the square 

root of the bulk modulus divided by the density of the fingernail location [39]. This hints 

that any combination of these four parameters can be changing within the fingernail plate 

to deviate from the reference TOF measurement. If the TOF first decreases within the 

first half of a patient’s treatment, then it may be possible that the thickness of the 

fingernail decreases proportionally, the density decreases, or the bulk modulus increases; 

for an increase in TOF, the opposite effects would occur. A 2009 study by Farran et al. 

stated that drier (thinner) fingernails are prone to brittle behavior, comparable to the 

flaking and fragility of patients’ fingernails due to onycholysis as observed in this study 

[59]. A consequence of drier fingernails is a decrease in strain, and hence bulk modulus, 

and an increase in density, as well as increase in sound speed, due to a decreased nail 

volume from lower levels of hydration [17]. Putting this all together it is possible that 

within the first half of treatment some patients developed a drier or thinner fingernail 

plate, and in the last half the nails began shifting to become wetter or thicker. Of course, 

other molecular changes may have altered the mechanical structure of the fingernails. 

There were some unavoidable restrictions in the study, including limited patient 

volunteers, which provided ranges for variation in gender, age and ethnicity. Most 

patients undergoing taxane-based treatments were women with breast cancer, and so 

more men would be required to thoroughly investigate the effects on both genders. In 

conclusion, this study is the first to investigate the quantitative effects of fingernails as a 

biomarker of chemotherapy treatment using ultrasound assessment. Based on the 

outcomes of this preliminary data collection it was validated that there are adverse effects 

present in the fingernail during chemotherapy treatment, which gave way to obtaining 

further quantitative data on fingernails to detect changes. 
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Chapter 3 METHOD FOR FINGERNAIL PROPERTY 

CHARACTERIZATION BY REFLECTANCE 

ULTRASOUND TECHNIQUE 

 

Summary: This chapter looks to build on the ideas from the previous chapter but by 

applying a novel ultrasonic approach with 19 MHz frequency for the calculation of 

additional acoustic and mechanical properties of fingernails. This method also employs 

the use of calibration phantoms to ensure that device accuracy is maintained before 

being applied to human fingernails. 

------------------------------------------------------------------------------------------------------------ 

3.1 Determination of Impedance, Density and Elasticity by 

Simultaneous Measurement of Thickness and Sound Speed 

The previous chapter introduces the idea of quantitatively assessing fingernails as 

a possible biomarker in chemotherapy treatment. This was accomplished with 

preliminary results considering fingernail plate TOF and its patterns over treatment 

periods. The outcomes of the prelusive data collection provided confirmation that 

fingernail defects are present and can be measured. To further investigate the fingernail 

more in-depth other parameters must be scrutinized. In the search to determine the 

acoustic and mechanical properties of fingernails, many ultrasonic techniques are 

available with benefits for different situations. One such method involves using the 

reflection amplitude on the surface of a sample material in comparison to the surface 

reflection amplitude on a reference material to distinguish sample material properties. 

This technique utilizes the longitudinal wave amplitude of a reference and unknown 

material in pulse-echo mode. By transforming the amplitudes into intensities their 

division yields the reflection coefficient of the unknown sample [60]: 
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𝑅 =

𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑟𝑒𝑓
 (38) 

Where Isample is the surface intensity of the unknown sample material and Iref is the 

surface intensity of the known reference material. 

The acoustic impedance of the unknown sample can then be calculated by 

knowing the acoustic impedance of the coupling layer/liquid (Zcouple) by: 

 
𝑍𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑍𝑐𝑜𝑢𝑝𝑙𝑒

1 + √𝑅

1 − √𝑅
 (39) 

The density of the unknown sample is then calculated by: 

 
𝜌𝑠𝑎𝑚𝑝𝑙𝑒 =

𝑍𝑠𝑎𝑚𝑝𝑙𝑒

𝑣𝑠𝑎𝑚𝑝𝑙𝑒
 (40) 

Where vsample is the sound speed of the unknown material. 

Finally, the elasticity or Young’s modulus (Ysample) can thus be calculated for an assumed 

homogenous, isotropic case by: 

 𝑌𝑠𝑎𝑚𝑝𝑙𝑒 =  𝜌𝑠𝑎𝑚𝑝𝑙𝑒𝑣𝑠𝑎𝑚𝑝𝑙𝑒
2 (41) 

 

3.1.1 Other Ultrasonic Reflectance Methods and Applications  

Other methods include multiple reflection methods, transmission methods and 

angular reflection methods. A useful technique as written in an article by Hoche et al. 

uses the multiple reflection echoes from the front and back boundaries of a sample to 

determine the reflection coefficient of certain liquids [61]. This method is used to 

calculate the density, acoustic impedance and reflection coefficient based on the TOF and 

three signal echo reflections from the sample boundaries [61]. The reflection coefficient 

is calculated by interpreting the amplitudes of the three reflected echoes: A1 (the first 

signal echo on the surface), A2 (the second signal echo from the bottom on the liquid 

interface) and A3 (the signal echo that has passed through the liquid twice before 

reflecting back). Altogether, these amplitude magnitudes can be linked to calculate the 

reflection coefficient of the sample liquid by [62, 61]: 
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𝑥 =

𝐴1 ∗ 𝐴3

𝐴2
 (42) 

 
𝑅 = √

𝑥

𝑥 − 1
 (43) 

Where x is an arbitrary variable and R is the reflection coefficient. 

The density of the liquid can then be calculated with the use of Equation (40) for 

sound speed from knowledge of the material thickness and calculating the TOF of the 

liquid and knowledge of the coupling layer acoustic impedance: 

 
𝜌𝑠𝑎𝑚𝑝𝑙𝑒 =

𝑍𝑐𝑜𝑢𝑝𝑙𝑒

𝑐𝑠𝑎𝑚𝑝𝑙𝑒
 
1 + 𝑅

1 − 𝑅
 (44) 

Where ρsample is the density of the liquid under investigation, Zcouple is the acoustic 

impedance of the coupling layer and csample is the sound speed of the sample liquid. 

The acoustic impedance of the sample Zsample can then be calculated by: 

 𝑍𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑐𝑠𝑎𝑚𝑝𝑙𝑒𝜌𝑠𝑎𝑚𝑝𝑙𝑒 (45) 

A second method of determining sample properties via first calculating reflection 

coefficient can be seen in an article by Chung et al [63]. Here, the ratio of sample 

amplitude to reference amplitude is considered but in the frequency domain as opposed to 

the time domain. The reflection coefficient is obtained by resolving the amplitude of the 

sample material from the front surface in the frequency domain (Fsample) and dividing by 

the amplitude of the reference material also in the frequency domain (Fref): 

 
𝑅 =

𝐹𝑠𝑎𝑚𝑝𝑙𝑒

𝐹𝑟𝑒𝑓
 (46) 

The density and acoustic impedance is then determined in the same fashion as in 

Equations (40) and (41). 
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3.1.2 Single Element Focused Transducer Probe, Setup and Software 

With a new methodology, different requirements and, feedback from the data 

collection a revised transducer was to be implemented. A user-friendly, hand-held probe 

was required with a solid delay line that could be placed directly on top of the fingernail. 

A high ultrasonic frequency was still required but due to the availability and cost a lower 

frequency than 50 MHz was used although medical ultrasound frequencies still use the 

range 1-20 MHz. Since the reflectance method uses a surface reflection and does not 

penetrate the fingernail structure, a lower frequency was sufficient for this analysis. The 

ultrasonic probe used for this application was purchased directly online from a 

manufacturer given a required central frequency. The hand-held probe consisted of a 19 

MHz spherically focused, single-element transducer with a 8.9 mm focal distance that 

was ensured by attachment of a polystyrene cone tip. The frequency bandwidth of the 

probe was provided as 96% of the central frequency. A spherically focused transducer 

was used in this application to provide enhanced lateral resolution within the focal zone 

which in our application would be the surface of the sample object or bottom of the cone 

tip. The longitudinal wave component only was under measurement in this study due to 

its higher sensitivity and intensity allowing a clearer signal distinction between cone tip 

and sample surface in near-normal incident angles. The central frequency was chosen to 

match frequencies of previous research but also to reduce cost. The shape and size of the 

probe itself was chosen to give the user a user-friendly grip, similar to a pencil, for ease-

of access in viewing and changing location of measurements. The probe was connected to 

a custom made acquisition board that would be able to connect via USB and to the probe. 

The board itself as shown in Fig. 3.1 was comprised of a Cypress FX2 universal serial 

bus (USB) circuit able to receive 5V and 500mA from a source such as a laptop, a power 

management circuit to organize how the power was distributed throughout the circuit, an 

Altera Cyclon IV field programmable gate array (FPGA) circuit, a pulser and a 12 bit 

analog to digital converter (ADC) circuit. 
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Figure 3.1: Diagram of acquisition board components and their external connections. The board itself is 

composed of a USB circuit, power managements unit, FPGA, ADC and pulser which is connected to the probe at 

one end and a laptop on the other end. 

The software coding used for this application was accomplished using 

MathWorks Inc., MatLab R2012a software. The software enabled the user to obtain      

A-scans at different locations on the sample by controlling the duration time of pulsing 

and how the output was displayed. For this application, the Peak-to-Peak amplitude of the 

signal was considered as to accurately distinguish the maximum amplitude from noise or 

power spikes. 

 

3.1.3 Calculations for Thickness and Sound Speed Determination 

Assuming that the thickness of a sample and the sound speed is unknown, then 

certain approaches must be taken in order to determine these crucial parameters. Two 

methods will be considered in this thesis to determine the thickness of a sample; one 

using OCT and the other using ultrasound. An OCT scan uses reflected backscattered 

light from a material’s microstructure to produce a high resolution image on the scale of 

microns [64]. It provides a cross-sectional image (B-scan) on the basis of multiple A-

scans from time-delayed signals similar to ultrasound but using light as opposed to sound 

and with much better resolution. This method is beneficial for its high resolution and 
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non-invasive, real-time imaging but its downside its high scattering and attenuation 

through tissue limiting its penetration depth to about 2 mm only [64].  

The second method of thickness measurement employs the use of ultrasound to 

detect the maximum amplitude at each of the interface boundaries of the sample under 

investigation. This method is also known as the V(z) method or double/variable focus 

technique [27, 65, 66]. It involves using a focused ultrasonic beam and focusing the focal 

spot on the first interface then shifting the position of the transducer by a known amount 

to focus on each subsequent interface boundary [27]. By knowledge of the displacement 

of the transducer, one can determine the thickness of each of the layers present evident 

every time the amplitude reaches a local maximum. This method is resolved to the 

accuracy of the motor that performs the displacement and its incremented steps of 

displacement.  

Both of the above approaches can be then used to determine the sound speed of 

the sample alongside finding the TOF between the layers. The TOF can be determined 

with a single ultrasonic A-scan of the sample. The A-scan will contain a series of local 

maximum peaks which are deemed to be the boundary interfaces. Most likely the 

difference between them will be assigned in number of samples taken which must then be 

converted to time by considering the sampling frequency. The sampling frequency is 

related to the sampling rate and the amount of supersampling by: 

 
𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =

𝑆𝑆

𝑆𝑅
 (47) 

 Where fsampling is the sampling frequency (s-1), SS is the amount of samples 

supersampled and SR is the sampling rate (s). 

Then the TOF is determined by the number of samples between interfaces and the 

sampling frequency by: 

 
𝑇𝑂𝐹 =

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
 (48) 

 Thus the sound speed is finally determined by dividing the thickness of the layer 

by the TOF determined for that layer. 
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3.1.4 Calculations for Impedance, Density and Elasticity Based on 

Reflectance Amplitude of Sound Waves 

In order to calculate the acoustic impedance, density and elasticity of an unknown 

sample the reflection coefficient must be calculated in the same manner as Equations 

(38)-(41). In this thesis, the method of reference and sample intensity ratios from surface 

reflection amplitudes will be used to determine the reflection coefficient. The other 

methods mentioned were tested as well but they did not prove to be as accurate and 

repeatable as this method. By considering the known parameters of the reference and 

sample a simplified equation was created for the reflection coefficient based on the 

maximum amplitude of the reference (Aref), and the unknown sample (Asample).  

 
𝑅 =

𝐴𝑠𝑎𝑚𝑝𝑙𝑒
2

𝐴𝑟𝑒𝑓
2(𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠)

 (49) 

The reflection loss factor was calculated based on the known impedance of the coupling 

medium Zcouple and reference material Zref to calculate the transmission and compensate 

for it. 

 
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 = 1 + [1 − (

𝑍𝑟𝑒𝑓 − 𝑍𝑐𝑜𝑢𝑝𝑙𝑒

𝑍𝑟𝑒𝑓 + 𝑍𝑐𝑜𝑢𝑝𝑙𝑒
)2] (50) 

From this point the impedance, density and elasticity are calculated the same as in 

Equations (40)-(41) using the sound speed calculated by the methods in the last section. 

 

3.1.5 Expected Results from Healthy Fingernail Measurements 

Based on literature values, fingernail thickness can range from 0.3-1 mm with an 

average thickness of 0.49±0.15 mm and a growth rate of 3.47 mm/month [16, 67]. The 

sound speed of fingernails was confirmed to be in the range of 1650-2760 m/s with an 

average of 2470 m/s [28, 29]. The density of healthy fingernails was calculated by a 

group of researches using pycnometry and determined to be 1.34 g/cm3 at room 
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temperature with 40-60% relative humidity which is the normal humidity range that 

human fingernails are exposed to [67]. Another study by Farran et al. was conducted on 

50 healthy fingernail clipping and was found that at 55% relative humidity the Young’s 

modulus was stated to be 2.32 GPa [59]. A different study showed a wider range of 

elasticity values for both male and female fingernails with fingernail thicknesses ranging 

from 0.29-0.44 mm and elasticity values ranging from 3.5-5.5 x1010 dynes/cm2 [68]. 

Minimal studies have been performed in regards to these parameters accurately 

calculated and so these reference literature values are to be taken as a guide for 

comparison since many factors can contribute to changes in these values. 
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Chapter 4 EXPERIMENTAL PROCEDURE 

 

Summary: This chapter aims to outline the need for calibration phantoms as well as 

explanation of the procedure leading to fingernail measurement. 

------------------------------------------------------------------------------------------------------------ 

4.1 Calibration and Accuracy Assessment 

Continuing from the previous chapter, the method of ultrasound reflectance 

requires the use of a reference material with known properties. For this reason, pure 

metals were chosen which possessed properties that could be identified in literature. Not 

only are the calibration phantoms used as a reference, they also allow the calculation of 

device accuracy and repeatability. Due to the fact that these materials are assumed pure, 

isotropic and homogenous they are ideal candidates to use. The term phantom in this 

thesis refers to materials that are used to evaluate the effectiveness of an imaging 

modality or device. One main goal of this thesis was to determine the characteristic 

properties of fingernails with as much accuracy as possible. As a way to confirm our 

accuracy these calibration materials were used to assess our procedure’s level of accuracy 

before applying it on fingernails. Fingernails possess many layers of keratinized structure 

with differing hydration and density properties therefore an objective was to ensure data 

had greatest signal-to-noise and minimal variation. To accomplish this, four metals    

(Fig. 4.1) were used as our initial calibration phantoms: pure rolled zinc, pure rolled 

copper, pure rolled aluminum and 1018 stainless steel. The exact chemical compositions 

of these metals were not available from the manufacturer although they stated it as being 

pure. They were assumed to be pure and were searched in literature as such. Before 

testing, the four metals were polished flat several microns to ensure no surface defects 

were present. 
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Figure 4.1: Diagram showing probe to measure the four metal phantom blocks: pure zinc, pure copper, pure 

aluminum and 1018 steel. 

The metals were chosen due to their availability and their high impedance values 

allowing maximum reflection between them and the coupling material polystyrene on the 

tip of the transducer. They were also chosen due to them being a homogenous, isotropic 

and pure material that would ideally have almost identical values throughout their bulk 

volume. The key to their ability as being calibration materials was their consistency in 

values as was proven in the next section. The literature values of each of these types of 

metals are provided in Table 4.1. The density, impedance and sound speed are purely 

based on other articles and the elasticity was calculated using Equation (45) to keep the 

methods consistent throughout this thesis. Elasticity values calculated may differ from 

ones in literature, possibly due to their different composition of the metals not exactly 

specified and the different equations used which were not always outlined in the 

literature. 
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Table 4.1: Material phantom types and their literature values. 

 
Material Type [69,70] 

Copper Zinc Aluminum 1018 Steel 

Density (g/ cm3) 8.90 7.10  2.70  7.80 

Impedance (MRayl) 41.8 29.6  17.1  46.1 

Sound speed (m/s) 4660  4170  6374  5917  

Young’s modulus (GPa) 193 123 110 273 

The thickness and TOF of the metals were able to be measured to ensure the 

sound speed was in close proximity to that of the literature values. The thickness was 

measured using a micrometer 10 times then averaged, and the TOF was measured using a 

50 MHz ultrasound probe 10 times and also averaged. The difference between the 

literature values and the calculated sound speed are given in Table 4.2. The percent 

difference between the literature and calculated values were all smaller than 3% for the 

highest deviations considered.  

Table 4.2: Difference between literature values and calculated values for sound speed in each of the four metal 

phantoms. 

 Calculated 

(m/s) 

Literature 

(m/s) 

Percent 

Difference 

Coefficient of 
Variation 

Copper 4723±53 4660 2% 1.0% 

Zinc 4133±30 4170 2% 0.7% 

Aluminum 6380±53 6374 1% 0.8% 

1018 Steel 5835±53 5917 2% 0.9% 

To test which of the phantoms would provide the most accurate values based on 

our reflectance method compared to literature values, each of them were used as the 

reference while the remaining were set as the samples to be identified. The single metal 

phantom that showed the most accurate resemblance to the literature was then used to 

reference and calculate the properties of a fingernail sample in-vivo. This was based on 

the sound speed values used from Table 4.2 and the amplitude obtained for each single 

measurement. For statistical purposes, 10 measurements of each metal used as a reference 

were taken to establish which of them was best suited to be most accurate before being 

applied to fingernail measurements. 
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4.2 Fingernail Measurement Procedure  

Once a reference material was identified its maximum surface amplitude was 

obtained for use in calculation. This was accomplished by setting a timer on the program 

code in order to collect enough data to give the best representation of the maximum 

amplitude; this would be difficult since the probe head was very sensitive to angular 

movement. A timer was set to one minute to allow the user to manipulate the probe head 

until the maximum was clearly obtained on the live A-scan display. The maximum 

reference amplitude was recorded at the end of the minute and the program provided the 

calculated parameters based on the sound speed and amplitude obtained. The remaining 

step was to obtain the maximum amplitude of the fingernail at a desired location. The 

probe was placed on top of the fingernail closest to the center and the program was run 

for one minute. The user handled the probe as to obtain the optimal angulation for 

maximum amplitude registration. In conjunction with the fingernail amplitude the sound 

speed of the fingernail was combined to the code based on either the OCT or ultrasound 

thickness measurements. With these three values the impedance, density and elasticity of 

the fingernail was determined. This procedure was conducted 10 times on the fingernail 

for statistical purposes and an average value was deduced for each parameter calculated. 
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Chapter 5 EXPERIMENTAL RESULTS AND 

DISCUSSION 

 

Summary: This chapter intends to first validate the accuracy and repeatability of the 19 

MHz ultrasonic probe using calibration phantoms then determine the acoustic and 

mechanical properties of a fingernail in-vivo. 

------------------------------------------------------------------------------------------------------------ 

5.1  Assessment of Fingernail Thickness, Sound Speed, Impedance, 

Density and Elasticity 

5.1.1 Accuracy of Transducer Based on Known Calibration Materials 

As mentioned in Section 4.1, each of the metal phantoms were tested as the 

reference to identify which gave the closest values to that of literature. For each case, a 

total of 10 measurements of the Peak-to-Peak amplitude were recorded and averaged. 

The impedance, density and elasticity were then based solely on the reference metal 

amplitude, sample metal amplitude, and sample sound speed. It was proven that 1018 

steel was the best candidate as the reference material due to the fact that it had the lowest 

percent difference between experimental values and literature values as shown in Table 

5.1-5.3 for all parameters tested. The error for each calculated value was obtained using 

the standard deviation as opposed to standard error to allow a greater error discrepancy 

for a more realistic deviation. The percent difference was calculated based on the 

experimental values calculated and the expected literature values. The coefficient of 

variation was also calculated based on the experimental value and its associated error. 
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Table 5.1: Experimental and literature values obtained for aluminum with 1018 steel reference based on 10 

measurements. 

Aluminum 

 
Experiment Literature 

Percent 

Difference 

Coefficient 

of Variation 

Reflectivity 0.6±0.1  
 

Sound speed 

(m/s) 
6380±53 6374 1% 0.8% 

Impedance 

(MRayl) 
18.7±0.2 17.1 9% 1% 

Density 

(g/cm
3
) 

2.93±0.02 2.70 8% 0.7% 

Elasticity 

(GPa) 
119.27±0.01 109 8% 0.01% 

 

 

Table 5.2: Experimental and literature values obtained for copper with 1018 steel reference based on 10 

measurements. 

Copper 

 
Experiment Literature 

Percent 

Difference 

Coefficient 

of Variation 

Reflectivity 0.8±0.1  
 

Sound speed 

(m/s) 
4723±20 4660 1% 0.4% 

Impedance 

(MRayl) 
46.5±0.2 41.8 10% 0.4% 

Density 

(g/cm
3
) 

9.85±0.01 8.90 10% 0.1% 

Elasticity 

(GPa) 
219.65±0.01 193 12% 0.01% 
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Table 5.3: Experimental and literature values obtained for zinc with 1018 steel reference based on 10 

measurements. 

Zinc 

 
Experiment Literature 

Percent 

Difference 

Coefficient 

of Variation 

Reflectivity 0.8±0.1  
 

Sound speed 

(m/s) 
4133±30 4170 1% 0.7% 

Impedance 

(MRayl) 
35.4±0.2 29.6 16% 0.6% 

Density 

(g/cm
3
) 

8.56±0.01 7.10 17% 0.1% 

Elasticity 

(GPa) 
146.25±0.01 124 15% 0.01% 

Based on 1018 steel being the reference material, the highest percent difference 

between experiment and literature was determined to be 17%, as seen in the zinc block. 

The material with the lowest percent difference was determined to be aluminum with a 

minimum of 8%. The material with the highest coefficient of variation was found to be 

aluminum, and the material with lowest values for coefficient of variation was 

determined to be copper. These very low variations are likely caused by the fact that the 

metals were polished to remove any sort of imperfections or granularity on the surface as 

well as make them as flat as possible to make it easier to maintain the probe tip 

perpendicular to the surface. 

 

5.1.2 Repeatability of Measurements  

The comparison of each material to one another in terms of accuracy was 

accomplished in the previous section, but the repeatability of each metal individually was 

also to be investigated. Each of the four metal phantoms were subject to repeatability 

tests to observe how much the amplitude would deviate based on 10 measurements in 

different locations. The results are displayed in Table 5.4. 

 



www.manaraa.com

63 

 

Table 5.4: Repeatability differences of all four metal phantoms used for calibration. 

 Average 

Amplitude 

Standard 

Deviation 

Coefficient 
of Variation 

1018 Steel 15817 ±98 0.6% 

Aluminum 13422 ±405 3.0% 

Copper 15568 ±143 0.9% 

Zinc 15090 ±363 2.0% 

The maximum coefficient of variation between repeated measurements was 3% 

for different locations which was within a 95% confidence interval. This analysis was 

very important because the error of probe must be as small as possible to validate that the 

results are real and not due to noise or random fluctuations. This could have major 

impacts on the calculated values since certain equations require exponential products 

causing a small change in value to become much different than anticipated. The 

amplitude obtained was very sensitive to angulation changes therefore this is a major 

cause of the error since the materials themselves are thoroughly uniform. 

 

5.1.3 Sound Speed Measurements of Fingernail 

One of the input parameters required to calculate the reflection coefficient using 

the reflectivity method is the sound speed of the material under investigation. Two 

methods were tested in order to assess the thickness and sound speed of a fingernail using 

ultrasound and OCT. Both of these methods were considered and compared to observe 

their usefulness. A single image on an OCT machine was taken of a thumb fingernail in-

vivo of a 29-year old healthy male in the sagittal plane (Fig. 5.1) and the thickness across 

that portion was averaged to an accuracy of 0.005 mm. The average thickness was found 

to be 0.57 mm according to the software equipped on the OCT machine. 
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Figure 5.1: OCT image measuring the average thickness of an in-vivo fingernail. The green line represents the 

bottom interface of the fingernail as identified by the OCT software. The value on the left is the average 

thickness along the green line. 

The thickness of that same fingernail was then determined using the ultrasonic 

V(z) approach which identified the translated displacement required to obtain maximum 

amplitude reflections from the top and bottom interface of the fingernail plate. This was 

performed using a scanning acoustic microscope developed by Tessonics Inc., Windsor, 

CA connected to a 50 MHz transducer with a 7 mm focal length – the same as used in the 

data collection (Fig. 5.2). The accuracy of the moving motor attached to the transducer 

limited the incremented displacement by 50.8 µm. Based on the number of samples 

between the maximum amplitude of the two interface boundaries the thickness of the 

fingernail was found to be 0.51±0.05 mm. This corresponded to a difference between 

OCT and ultrasound methods of 11%. This difference may be due to the fact that the two 

methods were not performed in the exact same location and so different spots of the 

fingernail may fluctuate in thickness. The TOF of the fingernail was then determined by a 

single A-scan to measure the amount of samples between the two local maximum peaks 

identified as the fingernail plate (Fig. 5.3). 
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Figure 5.2: Setup used to obtain the thickness of fingernail using ultrasound in V(z) mode. The dashed arrow 

indicates the direction of motion on the transducer. The bottom right image shows the transducer where the 

gold circular area is the aperture surface. 
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Figure 5.3: Diagram of a single A-scan from an in-vivo fingernail showing the interface boundaries identified by 

the separated amplitude peaks. 

With the two different thicknesses from the OCT and ultrasound method and the 

single value of TOF two different sound speeds were determined for each method    

(Table 5.5). The OCT measurement corresponded to a fingernail sound speed of 

2487.45±0.01 m/s and the ultrasound measurement corresponded to a fingernail sound 

speed of 2225.6±0.1 m/s. Both of these values are well within the range of fingernail 

sound speed values determined by several articles [17, 28, 29]. A source of error includes 

measurement locations being more proximal or distal causing small deviation in sound 

speed. Additionally, different time periods of measurement might cause changes due to 

diet and humidity of the fingernail but it is unknown how significant these changes may 

or may not be. Due to the low availability of the OCT machine only a single 

measurement on one fingernail was possible. 

Table 5.5: Sound speed values for OCT and ultrasound methods used to calculate fingernail thickness at a single 

location. 

 Thickness (mm) TOF (µs) Sound Speed (m/s) 

OCT 0.570±0.005 
4.58x10-7±5x10-9 

2487.45±0.01 

Ultrasound 0.51±0.05 2225.6±0.1 
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5.1.4 Impedance, Density and Elasticity of Fingernail 

As per previous examples of calculations the impedance, density and elasticity of 

the fingernail under example can be determined with knowledge of the maximum surface 

signal amplitude and sound speed. The results obtained from calculation for the 29 year-

old male fingernail are provided in Table 5.6. For this data, the sound speed based on the 

OCT thickness of the fingernail was used due to its greater accuracy of error. The 

impedance of fingernails was not found in any literature and so the literature values were 

calculated using the literature sound speed and density. As performed before, the 

elasticity was calculated using Equation (42). The literature elasticity, or Young’s 

modulus mentioned before in Section 3.1.5, was different than that of the one written in 

Table 5.6 possibly because the fingernails used in that study did not include the thumb 

which is the thickest of all fingernails. The thumb fingernail may possess increased 

rigidity and stiffness as well as the thickness of fingernails in literature were much less 

than the one obtained from our volunteer. The largest percent difference obtained for the 

fingernail measurement compared to literature was 16% which was within the limit for 

the calibration phantoms of 17%. Although the comparison to literature was sufficient, 

the coefficient of variation was much larger in the fingernail sample than in the metal 

phantoms. This was to be expected since the phantoms purpose was to ideally have 

perfectly uniform and isotropic surfaces while fingernails contain a rough and anisotropic 

surface. 

Table 5.6: Experimental fingernail properties on the thumb of a 29-year old male and the associated literature 

values for a wide range of volunteer demographics. 

Male Thumb Fingernail 

 
Experiment Literature 

Percent 

Difference 

Coefficient 

of Variation 

Reflectivity 0.1±0.1  
 

Sound speed (m/s) 2487.45 ±0.01 2470 [29] 1% 0.01% 

Impedance (MRayl) 4±2 3.3 15% 50% 

Density (g/cm
3
) 1.6±0.5 1.34 [67] 16% 31% 

Elasticity 

(GPa) 
9.8±0.3 8.2 16% 3% 
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5.1.5 Reflectivity Curves 

Considering a more general approach to viewing the data, distribution curves 

were created to illustrate the effect of reflectivity of a material on the impedance, density 

and elasticity. By encompassing the entire reflectivity range from 0-100%, the impedance 

was calculated accordingly. The reflectivity for each unit of impedance up to 100 MRayl 

- which most metals are included under - is shown in Fig. 5.4. There are many alloys of 

the metals used in this study and Fig. 5.5 provides a representation of the change in 

density for the materials based on their reflectivity in extreme cases. Similarly, elasticity 

values for the entire range of possible reflectivity is shown in Fig. 5.6 in extreme cases. 

In general, as a pattern based on the three graphs, it was observed that the lower the 

reflectivity a material had the lower the impedance, density and elasticity it has 

accordingly. All of these graphs were created using the equations provided in this thesis 

and should only be referenced if the same equations are used. No equation of best fit was 

able to be calculated for any of the below graphs. 

 

Figure 5.4: Distribution curve for reflectivity at differing impedance values. 
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Figure 5.5: Distribution curve for reflectivity at differing density values for aluminum, copper, zinc and the 

fingernail of a 29 year-old volunteer. 

 

 

Figure 5.6: Distribution curve for reflectivity at differing elasticity values for aluminum, copper, zinc and the 

fingernail of a 29 year-old volunteer. 
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5.1.6 Transducer Probe Resolution 

Similar to the transducer in the data collection, the resolution for the hand-held 

probe was determined to assess its acoustic parameters for future reference. The lateral 

resolution of the probe was simply determined by the diameter of the polystyrene cone tip 

since at this spot the focal point is located. The diameter of the cone tip measured by 

calipers was determined to be 2.00±0.05 mm. The axial resolution was determined 

similar to that of the previous transducer by measuring the FWHM pulse width at -6 dB 

of the signal. A pinducer was placed very close to the tip of the transducer cone while all 

submerged in water in the same manner as before. The pinducer acted to receive the 

transmitted signal from the closest point to cone tip focal spot. The recorded pulse was 

then considered based on its pulse length to measure its resolution along the axial 

direction. The pulse length was measured in units of time (Fig. 5.7) and then converted to 

distance by the use of the sound speed of the propagation medium polystyrene (2350 m/s) 

[69]. The pulse length was at first expressed in normalized units of intensity then 

integrated over the entire pulse time (Equation (24)) to calculate the pressure exerted. The 

pulse length was determined to be 3.0x10-7±0.3x10-7 s long in polystyrene. Thus, the 

axial resolution of the surface pulse was calculated to be 0.26±0.03 mm.  

 

Figure 5.7: Acoustic pressure pulse of single incident wave from 19 MHz probe on pinducer as a function of 

time. 
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5.2 Discussion 

In Chapter 2, a clinical data collection was described as a proof-of-concept to observe 

qualitative and quantitative changes to fingernails on patients being administered 

chemotherapy. By the end of treatment patients complained about doing up buttons and 

opening bottle caps as well as lifting heavier objects compared to pre-treatment 

examination. The most common visual deformity of the patient group was firstly 

onycholysis, seen as nail detachment and/or discoloration, and secondly as white 

transverse lines and/or white lunula. Onycholysis was likely to have been caused by 

mitotic cessation and cell death as a slow process over the course of treatment. Each 

white transverse line was likely associated with a treatment session where the body was 

suddenly toxified with taxane and regeneration or survival of cells in that short period 

was greatly reduced causing a white band. The observations made during this study have 

been validated in the past stating that chemotherapy, and specifically Paclitaxel, does 

induce fingernail alterations such as darker pigmentations and onycholysis [70, 71]. 

Although a frequently cited paper found that 41% of patients develop nail changes from 

Docetaxel and only less than 2% develop defects from Paclitaxel, the cases in this study 

differ seeing as there was a combination of chemotherapeutic drugs administered, not 

solely Paclitaxel [72]. Comparisons between the results of this study and those of other 

studies would generally not follow as effects may be compounded [70]. 

 Based on the ultrasound measurements of TOF for all 17 patients, it was identified 

that within the first half of taxane chemotherapy treatment 50% weekly and 100% 

biweekly dosed patients demonstrated to have a decrease in the median TOF. In the last 

half of treatment, for 86% weekly and 88% biweekly dosed patients it was demonstrated 

that there was an increase in median TOF. Lastly, comparing the beginning to the end of 

treatment, it was observed that 75% weekly and 50% biweekly dosed patients were 

measured to have an overall increase in median TOF. As mentioned previously, this 

pattern of changes could have been due to the degeneration then regeneration of 

fingernail nutrient blood supply which caused alterations in the density, hydration and 

thickness of the fingernail. This study validated the use of ultrasound to qualitatively 

determine preliminary diseased fingernail characteristics over the course of a cancer 
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treatment. Further investigation is required to supply more information about the 

fingernail hence a new method of approach was developed using ultrasound reflectance 

to further identify fingernail parameters.  

The method of ultrasound reflectance was then implemented in Chapter 4. A different 

transducer and setup was also used for this alternate technique. A lower frequency - 19 

MHz - compared to the previous 50 MHz was utilized due to several reasons. Due to the 

fact that only the surface amplitude was required and no depth penetration was necessary 

then it was enough to use a lower frequency transducer which was less costly and could 

be purchased in a smaller, user-friendly and hand-held probe design with a solid delay 

line that would sit directly on top of the fingernail. To note, diagnostic ultrasound probes 

currently work in the regime of 1-20 MHz and so, 19 MHz was still considered a high 

frequency for tissue testing. Although the frequency of transducer was reduced to 19 

MHz, the lateral resolution was very similar with both. The 50 MHz transducer had a 

lateral resolution of 2.1±0.1 mm and the 19 MHz transducer had a lateral resolution of 

2.00±0.05 mm. The axial resolution of the 50 MHz transducer was determined to be 

0.08±0.01 mm and that of the 19 MHz probe to be 0.26±0.03 mm based on their pulse 

widths. The 50 MHz probe had resolution several times greater than that of the 19 MHz 

but the 19 MHz probe was still on the order of magnitude to fingernail thickness. This 

means that if needed the fingernail plate TOF could also be obtained with the 19 MHz 

probe.  

By trial-and-error, it was determined that 1018 steel was the best candidate phantom 

to be used as the reference material to calculate reflectance. The phantom with the largest 

percent difference compared to literature was zinc (17%) and the lowest coefficient of 

variation was for aluminum (1%). The phantom with the smallest percent difference 

compared to literature was aluminum (8%). The maximum percent difference of zinc 

may seem relatively high even though the coefficients of variation for each of the 

phantoms are very low. This can be explained by the high error for the reflectivity thus, 

all of the preceding values are affected. Also, the exact composition of the phantoms and 

those in literature are not 100% certain so there may be an error associated with these as 

well. 
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In Section 5.1.3, a test trial was performed on a 29 year-old male volunteer’s thumb 

fingernail. Beforehand though, the sound speed of the fingernail was required. Based on 

the method of either OCT or ultrasound it was concluded that OCT was more accurate 

thus the fingernail sound speed of 2487.45±0.01 m/s was utilized in further calculations. 

This value was within the range of fingernail sound speed confirmed by literature. Due to 

the very low availability of the OCT machine only one single fingernail measurement 

was possible at the time. Henceforth, the maximum percent difference between all 

parameters including impedance, density and elasticity compared to literature was in the 

range of 16% for the fingernail. This was within the maximum percent difference for the 

calibration phantoms which confirmed the accuracy and precision of the devised 

technique in a real-life application. Again, the literature values obtained for fingernails 

were based on many factors including race, age, diet, environment so the reference 

literature was used as a general guide to ensure the functionality of the proposed device 

and methodology. The coefficients of variation were much greater for the fingernail than 

of the phantoms mainly due to the fact that the reflectivity error was on the magnitude of 

the reflectivity itself causing very large error in the other parameters calculated. Although 

the errors were large it was expected because compared to the polished, smooth and 

uniform phantoms the fingernail possessed a very rough and uneven surface which may 

lead to increased diffraction changing the amplitudes of the received sound waves enough 

to cause deviations in reflection accuracy. In addition, performing repeated measurements 

on the same location was challenging. 

It must be noted again that the equations used in this thesis are based on the 

assumption that the transducer was angled directly perpendicular to the sample surface, 

and that materials were isotropic and homogenous for the most part. Of course, other 

aberrations are likely present in the fingernail such as scatter but due to the fact that only 

the surface amplitude of reflection was considered for assumed flat surfaces these effects 

can be considered negligible. Limitations in the reflectance mode experiment include 

ensuring the transducer was perpendicular to the surface being measured, using a 

reference material with known exact specifications and determining the sound speed of 

the sample being measured accurately at a chosen location. Improvements that could be 

applied for future investigation could be obtaining a large volunteer group of different 
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genders, races, ages and with specific fingernail or sub-ungual deformities such as fungal 

infections to create a database of values. Another improvement would be to create a 

novel tip on the transducer probe so that the angle of positioning is easier and quicker to 

achieve an orientation perpendicular to the fingernail plate. The probe itself is 

miniaturized to an optimal degree but the controller board hardware can be further 

reduced in size to possibly even fit in a user’s pocket for easy transportation. 
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Chapter 6 CONCLUSION 

6.1 Concluding Remarks  

Despite the widespread use of diagnostic ultrasound in medicine, little research has 

been conducted regarding the applications of high frequency ultrasound to oncology, in 

particular, using the ultrasonic parameters of fingernails as biomarkers of systemic 

health. The fingernail plate begins its growth from the underlying tissue of the finger 

called the nail bed and matrix. These tissues are comprised of very rapidly replicating 

cells that are readily affected by changes to the blood supply provided to them. As the 

blood composition changes, the nail bed and matrix experience transformations which 

yield alterations during formation of the fingernail plate. It is well-known that 

chemotherapeutic agents, especially taxanes, induce adverse effects on the formation of 

fingernails. One of the aims of this thesis was to investigate whether fingernail plate 

changes could be assessed by surveying patients undergoing taxane therapy. A second 

goal of this thesis was to develop and implement an ultrasonic method of measuring and 

calculating additional acoustic and mechanical properties of fingernails. 

 Firstly, a clinical data collection was performed on patients receiving taxane 

regimens to view the changes in fingernail plate TOF and any associated patterns. This 

study was approved by both the University of Windsor and the Metropolitan Hospital 

ethics board. A total of 17 patients (16 female, 1 male) participated in this study, with 

ages ranging from 35-69 years. Measurements of the patient group were performed 

before treatment, in the middle of a treatment plan, and on the last day of treatment. For 

this study a 50 MHz ultrasonic transducer operating in pulse-echo mode was used. 

Similar studies performed previously used transducers with lower frequencies than 50 

MHz; it was in our interest to use a higher frequency in effort to acquire improved 

resolution images of microstructure from B-scans. The transducer resolution and other 

characteristics are outlined in Section 1.2. A custom, 3D-printed carcass was created for 

the transducer and a linear stepper motor was connected to allow the movement of the 

transducer once placed on the surface of a fingernail. For this preliminary trial, only the 
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TOF from B-scans was to be analysed since the thickness and sound speed in fingernails 

varies based on position as reported in literature. 

 The qualitative and quantitative results for the data collection are presented in 

Section 2.4. It was determined that 47% of patients developed onycholysis and/or 

discoloration and 24% developed white transverse lines and/or white lunula. In addition, 

numbness and grip worsened for almost all patients over the course of treatment. By the 

end of treatment, most patients experienced evident changes in fingertip numbness which 

was more severe than their grip ability at that same time period. Patients aged over 50 

years experienced greater severity of both grip strength and fingertip numbness than did 

the rest of the participants. Based on the TOF data, it was concluded that 50% of the 

weekly dosed and 100% of the biweekly dosed patients’ fingernails presented with a 

decrease in median TOF for the first half of treatments. During the last half of treatments, 

the median TOF was seen to increase for 86% of the weekly dosed and 88% of the 

biweekly dosed patients. Lastly, when comparing the baseline to end measurements, it 

was determined that there was an observed increase in median TOF for 75% of the 

weekly dosed and 50% of the biweekly dosed patients. A decrease in TOF was 

hypothesized to be caused by a drier, denser or thinner fingernail, while an increase in 

TOF could be caused by a wetter, less dense or thicker fingernail. The fact that overall 

fingernail TOF returned to near baseline values may also indicate the onset of cellular 

homeostasis, whereby the body, and hence the nail bed and matrix cells, adapt to the 

presence of chemotherapeutic agents and begin repairing damaged pathways. This 

clinical data collection was the first of its kind, and provided introductory evidence that 

fingernails serve as possible biomarkers for systemic health during chemotherapy 

treatment by means of quantitative ultrasonic assessment. It must be recognized that TOF 

provides only preliminary information as a first step towards validating the hypothesis. 

 After successfully completing the proof-of-concept data collection, further 

development of the methodology and procedure was implemented. This included both 

updated hardware and software. The 50 MHz transducer was replaced with a 19 MHz 

hand-held probe to create a more realistic scenario in a hospital environment while still 

providing effective resolution and accuracy. Due to the fact that only the surface 

reflection was required from the transducer, depth penetration was not an issue, and so a 
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more economic but equally as effective option was to use a lower frequency alternative 

still within the high frequency diagnostic ultrasound range. The resolution of the 19 MHz 

probe was outlined in Section 5.1.6. Along with an alternate transducer, a new method 

was implemented using ultrasound reflectivity. Several different reflectivity approaches 

were tested, but the most effective in terms of consistency and accuracy was that using 

the surface amplitude reflection of a reference material and comparing it to the surface 

amplitude reflection of an unknown material, all in the time-domain. The equations used 

and methodology of this process was presented in Chapter 3.  

Using the method of ultrasound reflectivity, parameters assessed included acoustic 

impedance, density and elasticity, employing known calibration phantoms including 

copper, zinc, aluminum and 1018 steel as references to identify the properties of a 

separate unknown material. The calibration phantoms provided information on how 

accurate the proposed method was expected to be on relatively pure, isotropic and 

homogenous materials, before the application to human fingernails. It was determined 

that the 19 MHz ultrasonic probe was capable of obtaining accurate and repeatable results 

on the calibration phantoms with a maximum percent difference error compared to 

literature of 17% as found for the zinc phantom. This percent difference may seem high 

but there are several factors that could have caused this deviation. The ability of the user 

to maintain the probe tip at an angle directly perpendicular to the material surface was 

challenging since the polystyrene cone tip had a very small surface area. This made the 

tip slide on the samples or change angle as the human subject would breathe or move. 

Also to note is the fact that exact composition of the phantoms and those from the 

literature may have varied slightly. Although the error compared to literature may be 

improved, the repeatability of phantom measurements was much more accurate, possibly 

revealing that there are in fact differences between the molecular composition of the 

samples used and those in literature. The repeatability of values from the metal phantoms 

was determined to have a maximum percent difference of 3%, which fell within a 95% 

confidence interval. The coefficients of variation for all phantoms were low, with a 

maximum of 1% as seen in aluminum. The probe was then tested on an in-vivo fingernail 

of a 29 year-old male volunteer. The maximum error obtained for the fingernail was 16% 

which was within the error of the calibration phantoms used. The error could be from the 
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fingernail thickness or sound speed used which may have been within millimeter distance 

to where the probe reflection measurements were recorded. Another source of error was 

that the literature value used was based on an average of fingernail properties from 

various demographics. The coefficient of variation for the fingernail measurements was 

much larger than that of the phantoms, as was expected. Only a single fingernail 

measurement was conducted, and so statistical significance is still to be investigated. 

Based on these results, the proposed ultrasound reflection method was able to distinguish 

material parameters to errors below 20% deviation from literature.  

Future plans for use of the 19 MHz probe may involve a larger volunteer group of 

different demographics, as well as further algorithm or probe tip development to 

accommodate for small angular deviations. Calculation of sound speed is a crucial 

parameter required for the reflectivity technique, and so a more efficient way determining 

fingernail thickness and sound speed would be desired. The hardware component may 

also be reduced in size and connected to a tablet for maximum portability. Based on the 

prelusive fingernail assessment, it was identified that fingernail changes could be 

evaluated. Thus, the application of ultrasound to quantitatively assess fingernail 

properties using reflectance signals validated to be useful in practice. With this in mind, 

the method could be ideal for clinical applications with further development. 
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